» Articles » PMID: 33071285

The SUMO Pathway in Pancreatic Cancer: Insights and Inhibition

Overview
Journal Br J Cancer
Specialty Oncology
Date 2020 Oct 19
PMID 33071285
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

An urgent medical need to develop novel treatment strategies for patients with pancreatic ductal adenocarcinoma (PDAC) exists. However, despite various efforts in the histopathological and molecular subtyping of PDAC, novel targeted or specific therapies have not been established. Posttranslational modifications (PTMs) with ubiquitin-like proteins, including small ubiquitin-like modifiers (SUMOs), mediate numerous processes that can contribute to the fitness and survival of cancer cells. The contribution of SUMOylation to transcriptional control, DNA repair pathways, mitotic progression, and oncogenic signalling has been described. Here we review functions of the SUMO pathway in PDAC, with a special focus on its connection to an aggressive subtype of the disease characterised by high MYC activity, and discuss SUMOylation inhibitors under development for precise PDAC therapies.

Citing Articles

Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma.

Shah A, Ganguly K, Rauth S, Sheree S, Khan I, Ganti A Drug Resist Updat. 2024; 77:101146.

PMID: 39243602 PMC: 11770815. DOI: 10.1016/j.drup.2024.101146.


A continuum of zinc finger transcription factor retention on native chromatin underlies dynamic genome organization.

Hu S, Liu Y, Zhang Q, Bai J, Xu C Mol Syst Biol. 2024; 20(7):799-824.

PMID: 38745107 PMC: 11220090. DOI: 10.1038/s44320-024-00038-5.


SUMOylation modulates eIF5A activities in both yeast and pancreatic ductal adenocarcinoma cells.

Seoane R, Lama-Diaz T, Romero A, El Motiam A, Martinez-Ferriz A, Vidal S Cell Mol Biol Lett. 2024; 29(1):15.

PMID: 38229033 PMC: 10790418. DOI: 10.1186/s11658-024-00533-5.


Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications.

Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B MedComm (2020). 2023; 4(3):e261.

PMID: 37143582 PMC: 10152985. DOI: 10.1002/mco2.261.


Integrated genomic analysis to identify druggable targets for pancreatic cancer.

Mugiyanto E, Adikusuma W, Irham L, Huang W, Chang W, Kuo C Front Oncol. 2022; 12:989077.

PMID: 36531045 PMC: 9752886. DOI: 10.3389/fonc.2022.989077.


References
1.
Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A . Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018; 33(3):512-526.e8. PMC: 5854186. DOI: 10.1016/j.ccell.2018.02.003. View

2.
Li Y, Du L, Wang J, Vega R, Lee T, Miao Y . Allosteric Inhibition of Ubiquitin-like Modifications by a Class of Inhibitor of SUMO-Activating Enzyme. Cell Chem Biol. 2018; 26(2):278-288.e6. PMC: 6524651. DOI: 10.1016/j.chembiol.2018.10.026. View

3.
Den Hollander J, Rimpi S, Doherty J, Rudelius M, Buck A, Hoellein A . Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood. 2010; 116(9):1498-505. PMC: 2938839. DOI: 10.1182/blood-2009-11-251074. View

4.
Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D . Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol. 2009; 12(1):54-9. DOI: 10.1038/ncb2004. View

5.
Schmidt S, Gay D, Uthe F, Denk S, Paauwe M, Matthes N . A MYC-GCN2-eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nat Cell Biol. 2019; 21(11):1413-1424. PMC: 6927814. DOI: 10.1038/s41556-019-0408-0. View