» Articles » PMID: 33065754

Artificial Intelligence for the Management of Pancreatic Diseases

Overview
Journal Dig Endosc
Date 2020 Oct 16
PMID 33065754
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Novel artificial intelligence techniques are emerging in all fields of healthcare, including gastroenterology. The aim of this review is to give an overview of artificial intelligence applications in the management of pancreatic diseases. We performed a systematic literature search in PubMed and Medline up to May 2020 to identify relevant articles. Our results showed that the development of machine-learning based applications is rapidly evolving in the management of pancreatic diseases, guiding precision medicine in clinical, endoscopic and radiologic settings. Before implementation into clinical practice, further research should focus on the external validation of novel techniques, clarifying the accuracy and robustness of these models.

Citing Articles

Deep Learning in Endoscopic Ultrasound: A Breakthrough in Detecting Distal Cholangiocarcinoma.

Orzan R, Santa D, Lorenzovici N, Zareczky T, Pojoga C, Agoston R Cancers (Basel). 2024; 16(22).

PMID: 39594747 PMC: 11593152. DOI: 10.3390/cancers16223792.


AI-powered innovations in pancreatitis imaging: a comprehensive literature synthesis.

Maletz S, Balagurunathan Y, Murphy K, Folio L, Chima R, Zaheer A Abdom Radiol (NY). 2024; 50(1):438-452.

PMID: 39133362 DOI: 10.1007/s00261-024-04512-4.


Endoscopic Ultrasound to Identify the Actual Cause of Idiopathic Acute Pancreatitis: A Systematic Review.

Cammarata F, Rovati L, Fontana P, Gambitta P, Armellino A, Aseni P Diagnostics (Basel). 2023; 13(20).

PMID: 37892077 PMC: 10606009. DOI: 10.3390/diagnostics13203256.


Current status of artificial intelligence analysis for the treatment of pancreaticobiliary diseases using endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography.

Kuwahara T, Hara K, Mizuno N, Haba S, Okuno N, Fukui T DEN Open. 2023; 4(1):e267.

PMID: 37397344 PMC: 10312781. DOI: 10.1002/deo2.267.


Artificial Intelligence-The Rising Star in the Field of Gastroenterology and Hepatology.

Stan-Ilie M, Sandru V, Constantinescu G, Plotogea O, Rinja E, Tincu I Diagnostics (Basel). 2023; 13(4).

PMID: 36832150 PMC: 9955763. DOI: 10.3390/diagnostics13040662.


References
1.
Das A, Nguyen C, Li F, Li B . Digital image analysis of EUS images accurately differentiates pancreatic cancer from chronic pancreatitis and normal tissue. Gastrointest Endosc. 2008; 67(6):861-7. DOI: 10.1016/j.gie.2007.08.036. View

2.
Qiu Q, Nian Y, Guo Y, Tang L, Lu N, Wen L . Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis. BMC Gastroenterol. 2019; 19(1):118. PMC: 6611034. DOI: 10.1186/s12876-019-1016-y. View

3.
Corral J, Hussein S, Kandel P, Bolan C, Bagci U, Wallace M . Deep Learning to Classify Intraductal Papillary Mucinous Neoplasms Using Magnetic Resonance Imaging. Pancreas. 2019; 48(6):805-810. DOI: 10.1097/MPA.0000000000001327. View

4.
Waldrop M . News Feature: What are the limits of deep learning?. Proc Natl Acad Sci U S A. 2019; 116(4):1074-1077. PMC: 6347705. DOI: 10.1073/pnas.1821594116. View

5.
Luo Y, Chen X, Chen J, Song C, Shen J, Xiao H . Preoperative Prediction of Pancreatic Neuroendocrine Neoplasms Grading Based on Enhanced Computed Tomography Imaging: Validation of Deep Learning with a Convolutional Neural Network. Neuroendocrinology. 2019; 110(5):338-350. DOI: 10.1159/000503291. View