» Articles » PMID: 33054162

Activation Microswitches in Adenosine Receptor A Function As Rheostats in the Cell Membrane

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2020 Oct 15
PMID 33054162
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Although multiple components of the cell membrane modulate the stability and activation of G protein-coupled receptors (GPCRs), insights into the dynamics of GPCR structures come from biophysical studies conducted in detergents. This is because of the challenges of studying activation in a multicomponent lipid bilayer. To understand the role of cellular membrane lipids and cations in GPCR activation, we performed multiscale molecular dynamics simulations (56 μs) on three different conformational states of adenosine receptor AR, in both the cell membrane-like lipid bilayer and in detergent micelles. Molecular dynamics (MD) simulations show that the phosphatidylinositol bisphosphate (PIP2) interacts with the basic residues in the intracellular regions of AR, thereby reducing the flexibility of the receptor in the inactive state and limiting the transition to the active-intermediate state. In the G protein-coupled fully active state, PIP2 stabilizes the GPCR:G protein complex. Such stiffening effects are absent in non-ionic detergent micelles, and therefore, more transitions have been observed in detergents. The inter-residue distances that change significantly upon GPCR activation are known as activation microswitches. The activation microswitches show different levels of activation in the cell membrane, in the pure POPC bilayer, and in detergents. Thus, the temporal heat map of different activation microswitches calculated from the MD simulations suggests a rheostat model of GPCR activation microswitches rather than the binary switch model. These simulation results connect the chemistry of cell membrane lipids to receptor activity, which is useful for the design of detergents mimicking the cell membrane.

Citing Articles

The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations.

Hedger G, Yen H J Mol Biol. 2025; 437(4):168937.

PMID: 39793883 PMC: 7617384. DOI: 10.1016/j.jmb.2025.168937.


Engineered odorant receptors illuminate the basis of odour discrimination.

de March C, Ma N, Billesbolle C, Tewari J, Llinas Del Torrent C, van der Velden W Nature. 2024; 635(8038):499-508.

PMID: 39478229 DOI: 10.1038/s41586-024-08126-0.


Cellular lipids regulate the conformational ensembles of the disordered intracellular loop 3 in β2-adrenergic receptor.

Mukhaleva E, Yang T, Sadler F, Sivaramakrishnan S, Ma N, Vaidehi N iScience. 2024; 27(6):110086.

PMID: 38947516 PMC: 11214514. DOI: 10.1016/j.isci.2024.110086.


Cellular Lipids Regulate the Conformational Ensembles of the Disordered Intracellular Loop 3 in β2 Adrenergic Receptor.

Mukhaleva E, Yang T, Sadler F, Sivaramakrishnan S, Ma N, Vaidehi N bioRxiv. 2023; .

PMID: 38077083 PMC: 10705491. DOI: 10.1101/2023.11.28.569080.


Engineered odorant receptors illuminate structural principles of odor discrimination.

de March C, Ma N, Billesbolle C, Tewari J, Llinas Del Torrent C, van der Velden W bioRxiv. 2023; .

PMID: 38014344 PMC: 10680712. DOI: 10.1101/2023.11.16.567230.


References
1.
Gregorio G, Masureel M, Hilger D, Terry D, Juette M, Zhao H . Single-molecule analysis of ligand efficacy in βAR-G-protein activation. Nature. 2017; 547(7661):68-73. PMC: 5502743. DOI: 10.1038/nature22354. View

2.
van der Westhuizen E, Valant C, Sexton P, Christopoulos A . Endogenous allosteric modulators of G protein-coupled receptors. J Pharmacol Exp Ther. 2015; 353(2):246-60. DOI: 10.1124/jpet.114.221606. View

3.
Lee J, Cheng X, Swails J, Yeom M, Eastman P, Lemkul J . CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2015; 12(1):405-13. PMC: 4712441. DOI: 10.1021/acs.jctc.5b00935. View

4.
Yen H, Hoi K, Liko I, Hedger G, Horrell M, Song W . PtdIns(4,5)P stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature. 2018; 559(7714):423-427. PMC: 6059376. DOI: 10.1038/s41586-018-0325-6. View

5.
Tsukamoto H, Farrens D . A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor. J Biol Chem. 2013; 288(39):28207-16. PMC: 3784730. DOI: 10.1074/jbc.M113.472464. View