» Articles » PMID: 33053165

MICOS Subcomplexes Assemble Independently on the Mitochondrial Inner Membrane in Proximity to ER Contact Sites

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2020 Oct 14
PMID 33053165
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

MICOS is a conserved multisubunit complex that localizes to mitochondrial cristae junctions and organizes cristae positioning within the organelle. MICOS is organized into two independent subcomplexes; however, the mechanisms that dictate the assembly and spatial positioning of each MICOS subcomplex are poorly understood. Here, we determine that MICOS subcomplexes target independently of one another to sites on the inner mitochondrial membrane that are in proximity to contact sites between mitochondria and the ER. One subcomplex, composed of Mic27/Mic26/Mic10/Mic12, requires ERMES complex function for its assembly. In contrast, the principal MICOS component, Mic60, self-assembles and localizes in close proximity to the ER through an independent mechanism. We also find that Mic60 can uniquely redistribute adjacent to forced mitochondria-vacuole contact sites. Our data suggest that nonoverlapping properties of interorganelle contact sites provide spatial cues that enable MICOS assembly and ultimately lead to proper physical and functional organization of mitochondria.

Citing Articles

How the Topology of the Mitochondrial Inner Membrane Modulates ATP Production.

Adams R, Afzal N, Jafri M, Mannella C Cells. 2025; 14(4).

PMID: 39996730 PMC: 11853683. DOI: 10.3390/cells14040257.


Mitochondrial-ER Contact Sites and Tethers Influence the Biosynthesis and Function of Coenzyme Q.

Novales N, Meyer H, Asraf Y, Schuldiner M, Clarke C Contact (Thousand Oaks). 2025; 8:25152564251316350.

PMID: 39906518 PMC: 11792030. DOI: 10.1177/25152564251316350.


Unbiased complexome profiling and global proteomics analysis reveals mitochondrial impairment and potential changes at the intercalated disk in presymptomatic R14Δ/+ mice hearts.

Foo B, Amedei H, Kaur S, Jaawan S, Boshnakovska A, Gall T PLoS One. 2024; 19(10):e0311203.

PMID: 39446877 PMC: 11501035. DOI: 10.1371/journal.pone.0311203.


Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis.

Khatun J, Gelles J, Chipuk J Dev Cell. 2024; 59(19):2549-2565.

PMID: 39378840 PMC: 11469553. DOI: 10.1016/j.devcel.2024.09.004.


Apolipoprotein O modulates cholesterol metabolism via NRF2/CYB5R3 independent of LDL receptor.

Chen J, Hu J, Guo X, Yang Y, Qin D, Tang X Cell Death Dis. 2024; 15(6):389.

PMID: 38830896 PMC: 11148037. DOI: 10.1038/s41419-024-06778-4.


References
1.
Gonzalez Montoro A, Auffarth K, Honscher C, Bohnert M, Becker T, Warscheid B . Vps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites. Dev Cell. 2018; 45(5):621-636.e7. DOI: 10.1016/j.devcel.2018.05.011. View

2.
John G, Shang Y, Li L, Renken C, Mannella C, Selker J . The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell. 2005; 16(3):1543-54. PMC: 551514. DOI: 10.1091/mbc.e04-08-0697. View

3.
Pfanner N, Warscheid B, Wiedemann N . Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019; 20(5):267-284. PMC: 6684368. DOI: 10.1038/s41580-018-0092-0. View

4.
Bohnert M, Zerbes R, Davies K, Muhleip A, Rampelt H, Horvath S . Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metab. 2015; 21(5):747-55. DOI: 10.1016/j.cmet.2015.04.007. View

5.
Zerbes R, Bohnert M, Stroud D, von der Malsburg K, Kram A, Oeljeklaus S . Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. J Mol Biol. 2012; 422(2):183-91. DOI: 10.1016/j.jmb.2012.05.004. View