Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony As a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature
Overview
Authors
Affiliations
We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.
Six Myths and Misconceptions about Essential Tremor.
Louis E Tremor Other Hyperkinet Mov (N Y). 2024; 14:49.
PMID: 39346807 PMC: 11428667. DOI: 10.5334/tohm.948.
Handforth A, Singh R, Kosoyan H, Kadam P Tremor Other Hyperkinet Mov (N Y). 2024; 14:20.
PMID: 38681506 PMC: 11049614. DOI: 10.5334/tohm.834.
Cerebellar dysfunction in rodent models with dystonia, tremor, and ataxia.
van der Heijden M, Sillitoe R Dystonia. 2023; 2.
PMID: 38105800 PMC: 10722573. DOI: 10.3389/dyst.2023.11515.
Mitoma H, Kakei S, Tanaka H, Manto M Biology (Basel). 2023; 12(11).
PMID: 37998034 PMC: 10669841. DOI: 10.3390/biology12111435.
Handforth A, Singh R, Treven M, Ernst M Tremor Other Hyperkinet Mov (N Y). 2023; 13:39.
PMID: 37900009 PMC: 10607569. DOI: 10.5334/tohm.796.