» Articles » PMID: 33046906

The Structure of a Calsequestrin Filament Reveals Mechanisms of Familial Arrhythmia

Overview
Date 2020 Oct 13
PMID 33046906
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Mutations in the calcium-binding protein calsequestrin cause the highly lethal familial arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but there is not yet an atomic-resolution structure of a calsequestrin filament. We report a crystal structure of a human cardiac calsequestrin filament with supporting mutational analysis and in vitro filamentation assays. We identify and characterize a new disease-associated calsequestrin mutation, S173I, that is located at the filament-forming interface, and further show that a previously reported dominant disease mutation, K180R, maps to the same surface. Both mutations disrupt filamentation, suggesting that disease pathology is due to defects in multimer formation. An ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. Our study thus provides a unifying molecular mechanism through which dominant-acting calsequestrin mutations provoke lethal arrhythmias.

Citing Articles

Investigation of a Large Kindred Reveals Cardiac Calsequestrin () as a Cause of Brugada Syndrome.

dApolito M, Santoro F, Ranaldi A, Ragnatela I, Colia A, Cannito S Genes (Basel). 2024; 15(7).

PMID: 39062601 PMC: 11275647. DOI: 10.3390/genes15070822.


The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications.

Marabelli C, Santiago D, Priori S Biomolecules. 2023; 13(12).

PMID: 38136565 PMC: 10741413. DOI: 10.3390/biom13121693.


Physiology of intracellular calcium buffering.

Eisner D, Neher E, Taschenberger H, Smith G Physiol Rev. 2023; 103(4):2767-2845.

PMID: 37326298 PMC: 11550887. DOI: 10.1152/physrev.00042.2022.


Pacing Dynamics Determines the Arrhythmogenic Mechanism of the CPVT2-Causing CASQ2 Mutation in a Guinea Pig Ventricular Myocyte Computational Model.

Paudel R, Jafri M, Ullah A Genes (Basel). 2023; 14(1).

PMID: 36672764 PMC: 9858930. DOI: 10.3390/genes14010023.


Impaired Dynamic Sarcoplasmic Reticulum Ca Buffering in Autosomal Dominant CPVT2.

Wleklinski M, Kryshtal D, Kim K, Parikh S, Blackwell D, Marty I Circ Res. 2022; 131(8):673-686.

PMID: 36102198 PMC: 9529867. DOI: 10.1161/CIRCRESAHA.121.320661.


References
1.
Bers D . Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol. 2004; 37(2):417-29. DOI: 10.1016/j.yjmcc.2004.05.026. View

2.
Royer L, Rios E . Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol. 2009; 587(Pt 13):3101-11. PMC: 2727020. DOI: 10.1113/jphysiol.2009.171934. View

3.
Maclennan D, Wong P . Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971; 68(6):1231-5. PMC: 389160. DOI: 10.1073/pnas.68.6.1231. View

4.
Maclennan D . Isolation of a second form of calsequestrin. J Biol Chem. 1974; 249(3):980-4. View

5.
Ostwald T, Maclennan D . Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem. 1974; 249(3):974-9. View