» Articles » PMID: 33042083

Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal Subsp. ATCC 15697

Overview
Journal Front Microbiol
Specialty Microbiology
Date 2020 Oct 12
PMID 33042083
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Riboflavin or vitamin B is the precursor of the essential coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Despite increased interest in microbial synthesis of this water-soluble vitamin, the metabolic pathway for riboflavin biosynthesis has been characterized in just a handful of bacteria. Here, comparative genome analysis identified the genes involved in the biosynthetic pathway of riboflavin in certain bifidobacterial species, including the human gut commensal subsp. () ATCC 15697. Using comparative genomics and phylogenomic analysis, we investigated the evolutionary acquisition route of the riboflavin biosynthesis or gene cluster in and the distribution of riboflavin biosynthesis-associated genes across the genus. Using ATCC 15697 as model organism for this pathway, we isolated spontaneous riboflavin overproducers, which had lost transcriptional regulation of the genes required for riboflavin biosynthesis. Among them, one mutant was shown to allow riboflavin release into the medium to a concentration of 60.8 ng mL. This mutant increased vitamin B concentration in a fecal fermentation system, thus providing promising data for application of this isolate as a functional food ingredient.

Citing Articles

Therapeutic Potential of subsp. B8762 on Gut and Respiratory Health in Infant.

Richmond R, Mageswary U, Ali A, Taib F, Koo T, Yusof A Int J Mol Sci. 2025; 26(3).

PMID: 39941091 PMC: 11818524. DOI: 10.3390/ijms26031323.


Exploring the vitamin biosynthesis landscape of the human gut microbiota.

Tarracchini C, Lugli G, Mancabelli L, Van Sinderen D, Turroni F, Ventura M mSystems. 2024; 9(10):e0092924.

PMID: 39287373 PMC: 11494892. DOI: 10.1128/msystems.00929-24.


Pseudocin 196, a novel lantibiotic produced by elicits antimicrobial activity against clinically relevant pathogens.

Sanchez-Gallardo R, OConnor P, ONeill I, McDonnell B, Lee C, Moore R Gut Microbes. 2024; 16(1):2387139.

PMID: 39106231 PMC: 11305057. DOI: 10.1080/19490976.2024.2387139.


What happens to Bifidobacterium adolescentis and Bifidobacterium longum ssp. longum in an experimental environment with eukaryotic cells?.

Jakubczyk D, Leszczynska K, Pacyga-Prus K, Kozakiewicz D, Kazana-Pluszka W, Gelej D BMC Microbiol. 2024; 24(1):60.

PMID: 38373929 PMC: 10875879. DOI: 10.1186/s12866-023-03179-z.


Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes.

Zhu X, Tian X, Wang M, Li Y, Yang S, Kong J Int Microbiol. 2024; 27(5):1417-1428.

PMID: 38278974 DOI: 10.1007/s10123-024-00485-y.


References
1.
Dakora F, Matiru V, Kanu A . Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front Plant Sci. 2015; 6:700. PMC: 4568397. DOI: 10.3389/fpls.2015.00700. View

2.
Arena M, Russo P, Capozzi V, Lopez P, Fiocco D, Spano G . Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl Microbiol Biotechnol. 2014; 98(17):7569-81. DOI: 10.1007/s00253-014-5837-x. View

3.
Bottacini F, Van Sinderen D, Ventura M . Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J. 2017; 474(24):4137-4152. DOI: 10.1042/BCJ20160756. View

4.
Arias-Carrasco R, Vasquez-Moran Y, Nakaya H, Maracaja-Coutinho V . StructRNAfinder: an automated pipeline and web server for RNA families prediction. BMC Bioinformatics. 2018; 19(1):55. PMC: 5816368. DOI: 10.1186/s12859-018-2052-2. View

5.
LeBlanc J, Levit R, Savoy de Giori G, de Moreno de LeBlanc A . Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Appl Microbiol Biotechnol. 2020; 104(8):3331-3337. DOI: 10.1007/s00253-020-10487-1. View