» Articles » PMID: 33025267

Advances on Inorganic Scintillator-based Optic Fiber Dosimeters

Overview
Journal EJNMMI Phys
Specialty Radiology
Date 2020 Oct 7
PMID 33025267
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

This article presents a new perspective on the development of inorganic scintillator-based fiber dosimeters (IOSFDs) for medical radiotherapy dosimetry (RTD) focusing on real-time in vivo dosimetry. The scintillator-based optical fiber dosimeters (SFD) are compact, free of electromagnetic interference, radiation-resistant, and robust. They have shown great potential for real-time in vivo RTD. Compared with organic scintillators (OSs), inorganic scintillators (IOSs) have larger X-ray absorption and higher light output. Variable IOSs with maximum emission peaks in the red part of the spectrum offer convenient stem effect removal. This article outlines the main advantages and disadvantages of utilizing IOSs for SFD fabrication. IOSFDs with different configurations are presented, and their use for dosimetry in X-ray RT, brachytherapy (BT), proton therapy (PT), and boron neutron capture therapy (BNCT) is reviewed. Challenges including the percentage depth dose (PDD) deviation from the standard ion chamber (IC) measurement, the angular dependence, and the Cherenkov effect are discussed in detail; methods to overcome these problems are also presented.

Citing Articles

Compact and Real-Time Radiation Dosimeter Using Silicon Photomultipliers for In Vivo Dosimetry in Radiation Therapy.

Kim J, Park J, Park B, Kim Y, Park B, Park S Sensors (Basel). 2025; 25(3).

PMID: 39943495 PMC: 11820070. DOI: 10.3390/s25030857.


Characterisation of a Silicon Photomultiplier Based Oncological Brachytherapy Fibre Dosimeter.

Caccia M, Giaz A, Galoppo M, Santoro R, Martyn M, Bianchi C Sensors (Basel). 2024; 24(3).

PMID: 38339627 PMC: 10856931. DOI: 10.3390/s24030910.


Real-time in vivo dose measurement using ruby-based fibre optic dosimetry during internal radiation therapy.

Birajdar S, Zhang W, Santos A, Hickson K, Afshar Vahid S Phys Eng Sci Med. 2023; 46(3):1205-1213.

PMID: 37395926 PMC: 10480264. DOI: 10.1007/s13246-023-01288-7.


Evolution of Highly Biocompatible and Thermally Stable YVO:Er/Yb Upconversion Mesoporous Hollow Nanospheriods as Drug Carriers for Therapeutic Applications.

Pavitra E, Lee H, Hwang S, Park J, Han Y, Raju G Nanomaterials (Basel). 2022; 12(15).

PMID: 35893490 PMC: 9332312. DOI: 10.3390/nano12152520.

References
1.
Clift M, Johnston P, Webb D . A temporal method of avoiding the Cerenkov radiation generated in organic scintillator dosimeters by pulsed mega-voltage electron and photon beams. Phys Med Biol. 2002; 47(8):1421-33. DOI: 10.1088/0031-9155/47/8/313. View

2.
OKeeffe S, McCarthy D, Woulfe P, Grattan M, Hounsell A, Sporea D . A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. Br J Radiol. 2015; 88(1050):20140702. PMC: 4628446. DOI: 10.1259/bjr.20140702. View

3.
Ito Y, Katano G, Harano H, Matsumoto T, Uritani A, Kudo K . Development of a tiny neutron probe with an optical fibre for BNCT. Radiat Prot Dosimetry. 2004; 110(1-4):619-22. DOI: 10.1093/rpd/nch136. View

4.
Linares Rosales H, Duguay-Drouin P, Archambault L, Beddar S, Beaulieu L . Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy. Med Phys. 2019; 46(5):2412-2421. DOI: 10.1002/mp.13498. View

5.
Lambert J, Yin Y, McKenzie D, Law S, Suchowerska N . Cerenkov-free scintillation dosimetry in external beam radiotherapy with an air core light guide. Phys Med Biol. 2008; 53(11):3071-80. DOI: 10.1088/0031-9155/53/11/021. View