» Articles » PMID: 33019633

The Use of Inertial Measurement Units for the Study of Free Living Environment Activity Assessment: A Literature Review

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2020 Oct 6
PMID 33019633
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

This article presents an overview of fifty-eight articles dedicated to the evaluation of physical activity in free-living conditions using wearable motion sensors. This review provides a comprehensive summary of the technical aspects linked to sensors (types, number, body positions, and technical characteristics) as well as a deep discussion on the protocols implemented in free-living conditions (environment, duration, instructions, activities, and annotation). Finally, it presents a description and a comparison of the main algorithms and processing tools used for assessing physical activity from raw signals.

Citing Articles

Gait-Based AI Models for Detecting Sarcopenia and Cognitive Decline Using Sensor Fusion.

Aznar-Gimeno R, Perez-Lasierra J, Perez-Lazaro P, Bosque-Lopez I, Azpiroz-Puente M, Salvo-Ibanez P Diagnostics (Basel). 2025; 14(24.

PMID: 39767247 PMC: 11675090. DOI: 10.3390/diagnostics14242886.


Sarcopenia screening based on the assessment of gait with inertial measurement units: a systematic review.

Perez-Lasierra J, Azpiroz-Puente M, Alfaro-Santafe J, Almenar-Arasanz A, Alfaro-Santafe J, Gomez-Bernal A BMC Geriatr. 2024; 24(1):863.

PMID: 39443871 PMC: 11515692. DOI: 10.1186/s12877-024-05475-3.


Innovative Detection and Segmentation of Mobility Activities in Patients Living with Parkinson's Disease Using a Single Ankle-Positioned Smartwatch.

Goubault E, Duval C, Martin C, Lebel K Sensors (Basel). 2024; 24(17).

PMID: 39275396 PMC: 11398008. DOI: 10.3390/s24175486.


The Analytical Validity of Stride Detection and Gait Parameters Reconstruction Using the Ankle-Mounted Inertial Measurement Unit Syde.

Michaud M, Guerin A, Dejean de La Batie M, Bancel L, Oudre L, Tricot A Sensors (Basel). 2024; 24(8).

PMID: 38676029 PMC: 11054238. DOI: 10.3390/s24082413.


Feasibility of Using a GENEActiv Accelerometer with Triaxial Acceleration and Temperature Sensors to Monitor Adherence to Shoulder Sling Wear Following Surgery.

Barakat A, Manga A, Sheikh A, McWilliams R, Rowlands A, Singh H Sensors (Basel). 2024; 24(3).

PMID: 38339597 PMC: 10856901. DOI: 10.3390/s24030880.


References
1.
Gao L, Bourke A, Nelson J . Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med Eng Phys. 2014; 36(6):779-85. DOI: 10.1016/j.medengphy.2014.02.012. View

2.
Ayachi F, Nguyen H, Lavigne-Pelletier C, Goubault E, Boissy P, Duval C . Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs). Physiol Meas. 2016; 37(3):442-61. DOI: 10.1088/0967-3334/37/3/442. View

3.
Frost Jr J . Triaxial vector accelerometry: a method for quantifying tremor and ataxia. IEEE Trans Biomed Eng. 1978; 25(1):17-27. DOI: 10.1109/TBME.1978.326372. View

4.
Attal F, Mohammed S, Dedabrishvili M, Chamroukhi F, Oukhellou L, Amirat Y . Physical Human Activity Recognition Using Wearable Sensors. Sensors (Basel). 2015; 15(12):31314-38. PMC: 4721778. DOI: 10.3390/s151229858. View

5.
Montoye H, Taylor H . Measurement of physical activity in population studies: a review. Hum Biol. 1984; 56(2):195-216. View