» Articles » PMID: 3301804

Transcriptional Regulation of the DAL5 Gene in Saccharomyces Cerevisiae

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1987 Aug 1
PMID 3301804
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

We demonstrate that the DAL5 gene, encoding a necessary component of the allantoate transport system, is constitutively expressed in Saccharomyces cerevisiae. Its relatively high basal level of expression did not increase further upon addition of allantoin pathway intermediates. However, steady-state DAL5 mRNA levels dropped precipitously when a repressive nitrogen source was provided. These control characteristics of DAL5 expression make this gene a good model with which to unravel the mechanism of nitrogen catabolite repression. Its particular advantage relative to other potentially useful genes derives from its lack of control by induction and hence the complicating effects of inducer exclusion.

Citing Articles

Unlocking the secrets of peptide transport in wine yeast: insights into oligopeptide transporter functions and nitrogen source preferences.

Berg H, Arju G, Becerra-Rodriguez C, Galeote V, Nisamedtinov I Appl Environ Microbiol. 2023; 89(11):e0114123.

PMID: 37843270 PMC: 10686055. DOI: 10.1128/aem.01141-23.


TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression.

Tate J, Rai R, Cooper T Yeast. 2023; 40(8):318-332.

PMID: 36960709 PMC: 10518031. DOI: 10.1002/yea.3849.


Transcriptomic analysis of thermotolerant yeast in multiple inhibitors tolerance.

Wang D, Wu D, Yang X, Hong J RSC Adv. 2022; 8(26):14177-14192.

PMID: 35540752 PMC: 9079866. DOI: 10.1039/c8ra00335a.


Yeast Plasma Membrane Fungal Oligopeptide Transporters Display Distinct Substrate Preferences despite Their High Sequence Identity.

Becerra-Rodriguez C, Taghouti G, Portier P, Dequin S, Casal M, Paiva S J Fungi (Basel). 2021; 7(11).

PMID: 34829250 PMC: 8625066. DOI: 10.3390/jof7110963.


Diversity of Oligopeptide Transport in Yeast and Its Impact on Adaptation to Winemaking Conditions.

Becerra-Rodriguez C, Marsit S, Galeote V Front Genet. 2020; 11:602.

PMID: 32587604 PMC: 7298112. DOI: 10.3389/fgene.2020.00602.


References
1.
Sumrada R, Cooper T . Isolation of the CAR1 gene from Saccharomyces cerevisiae and analysis of its expression. Mol Cell Biol. 1982; 2(12):1514-23. PMC: 369960. DOI: 10.1128/mcb.2.12.1514-1523.1982. View

2.
Lawther R, Cooper T . Kinetics of induced and repressed enzyme synthesis in Saccharomyces cerevisiae. J Bacteriol. 1975; 121(3):1064-73. PMC: 246036. DOI: 10.1128/jb.121.3.1064-1073.1975. View

3.
Lawther R, Phillips S, Cooper T . Lomofungin inhibition of allophanate hydrolase synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1975; 137(2):89-99. DOI: 10.1007/BF00341675. View

4.
Bossinger J, Cooper T . Sequence of molecular events involved in induction of allophanate hydrolase. J Bacteriol. 1976; 126(1):198-204. PMC: 233275. DOI: 10.1128/jb.126.1.198-204.1976. View

5.
Bossinger J, Cooper T . Execution times of macromolecular synthetic processes involved in the induction of allophanate hydrolase at 15 degrees C. J Bacteriol. 1976; 128(1):498-501. PMC: 232883. DOI: 10.1128/jb.128.1.498-501.1976. View