Berg H, Arju G, Becerra-Rodriguez C, Galeote V, Nisamedtinov I
Appl Environ Microbiol. 2023; 89(11):e0114123.
PMID: 37843270
PMC: 10686055.
DOI: 10.1128/aem.01141-23.
Tate J, Rai R, Cooper T
Yeast. 2023; 40(8):318-332.
PMID: 36960709
PMC: 10518031.
DOI: 10.1002/yea.3849.
Wang D, Wu D, Yang X, Hong J
RSC Adv. 2022; 8(26):14177-14192.
PMID: 35540752
PMC: 9079866.
DOI: 10.1039/c8ra00335a.
Becerra-Rodriguez C, Taghouti G, Portier P, Dequin S, Casal M, Paiva S
J Fungi (Basel). 2021; 7(11).
PMID: 34829250
PMC: 8625066.
DOI: 10.3390/jof7110963.
Becerra-Rodriguez C, Marsit S, Galeote V
Front Genet. 2020; 11:602.
PMID: 32587604
PMC: 7298112.
DOI: 10.3389/fgene.2020.00602.
Study of Amyloids Using Yeast.
Wickner R, Kryndushkin D, Shewmaker F, McGlinchey R, Edskes H
Methods Mol Biol. 2018; 1779:313-339.
PMID: 29886541
PMC: 7337124.
DOI: 10.1007/978-1-4939-7816-8_19.
[PSI+] prion propagation is controlled by inositol polyphosphates.
Wickner R, Kelly A, Bezsonov E, Edskes H
Proc Natl Acad Sci U S A. 2017; 114(40):E8402-E8410.
PMID: 28923943
PMC: 5635934.
DOI: 10.1073/pnas.1714361114.
Horizontal gene transfer drives adaptive colonization of apple trees by the fungal pathogen Valsa mali.
Yin Z, Zhu B, Feng H, Huang L
Sci Rep. 2016; 6:33129.
PMID: 27634406
PMC: 5025739.
DOI: 10.1038/srep33129.
Prions, amyloids, and RNA: Pieces of a puzzle.
Nizhnikov A, Antonets K, Bondarev S, Inge-Vechtomov S, Derkatch I
Prion. 2016; 10(3):182-206.
PMID: 27248002
PMC: 4981203.
DOI: 10.1080/19336896.2016.1181253.
Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.
Wickner R, Edskes H, Gorkovskiy A, Bezsonov E, Stroobant E
Adv Genet. 2016; 93:191-236.
PMID: 26915272
PMC: 9432818.
DOI: 10.1016/bs.adgen.2015.12.003.
Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE3-1].
Troisi E, Rockman M, Nguyen P, Oliver E, Hines J
Mol Microbiol. 2015; 97(5):926-41.
PMID: 26031938
PMC: 4689296.
DOI: 10.1111/mmi.13076.
Study of amyloids using yeast.
Wickner R, Kryndushkin D, Shewmaker F, McGlinchey R, Edskes H
Methods Mol Biol. 2012; 849:321-46.
PMID: 22528100
PMC: 3479635.
DOI: 10.1007/978-1-61779-551-0_22.
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae.
Ljungdahl P, Daignan-Fornier B
Genetics. 2012; 190(3):885-929.
PMID: 22419079
PMC: 3296254.
DOI: 10.1534/genetics.111.133306.
Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine.
Georis I, Tate J, Cooper T, Dubois E
J Biol Chem. 2011; 286(52):44897-912.
PMID: 22039046
PMC: 3248002.
DOI: 10.1074/jbc.M111.290577.
Amyloid of the Candida albicans Ure2p prion domain is infectious and has an in-register parallel β-sheet structure.
Engel A, Shewmaker F, Edskes H, Dyda F, Wickner R
Biochemistry. 2011; 50(27):5971-8.
PMID: 21634787
PMC: 3144561.
DOI: 10.1021/bi200142x.
Prion-forming ability of Ure2 of yeasts is not evolutionarily conserved.
Edskes H, Engel A, McCann L, Brachmann A, Tsai H, Wickner R
Genetics. 2011; 188(1):81-90.
PMID: 21368275
PMC: 3120146.
DOI: 10.1534/genetics.111.127217.
Complex evolution of the DAL5 transporter family.
Hellborg L, Woolfit M, Arthursson-Hellborg M, Piskur J
BMC Genomics. 2008; 9:164.
PMID: 18405355
PMC: 2329640.
DOI: 10.1186/1471-2164-9-164.
Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae.
Cai H, Hauser M, Naider F, Becker J
Eukaryot Cell. 2007; 6(10):1805-13.
PMID: 17693598
PMC: 2043388.
DOI: 10.1128/EC.00257-06.
Ure2p function is enhanced by its prion domain in Saccharomyces cerevisiae.
Shewmaker F, Mull L, Nakayashiki T, Masison D, Wickner R
Genetics. 2007; 176(3):1557-65.
PMID: 17507672
PMC: 1931552.
DOI: 10.1534/genetics.107.074153.
Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae.
Kaur J, Bachhawat A
Genetics. 2007; 176(2):877-90.
PMID: 17435223
PMC: 1894615.
DOI: 10.1534/genetics.107.070342.