» Articles » PMID: 33013166

Comparative Mitochondrial Genomes of Four Species of and Phylogenetic Implications (Orthoptera, Melanoplinae)

Overview
Journal Zookeys
Date 2020 Oct 5
PMID 33013166
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

In this study, the whole mitochondrial genomes (mitogenomes) from four species were sequenced. The complete mitochondrial genomes of , , , and are 15,857 bp, 15,818 bp, 15,843 bp, and 15,872 bp in size, respectively. The 13 protein-coding genes (PCGs) begin with typical ATN codons, except for COXI in , which begins with ACC. The highest A+T content in all the sequenced orthopteran mitogenomes is 76.8% (), followed by 76.5% (), 76.4% () and 76.4% () (measured on the major strand). The long polythymine stretches (T-stretch) in the A+T-rich region of the four species are not adjacent to the trnI locus but are inside the stem-loop sequences on the major strand. Moreover, several repeated elements are found in the A+T-rich region of the four species. Phylogenetic analysis based on 53 mitochondrial genomes using Bayesian Inference (BI) and Maximum Likelihood (ML) revealed that Melanoplinae (Podismini) was a monophyletic group; however, the monophyly of was not supported. These data will provide important information for a better understanding of the phylogenetic relationship of Melanoplinae.

Citing Articles

Phylogenetics and Evolutionary Dynamics of Yunnan Acrididae Grasshoppers Inferred from 17 New Mitochondrial Genomes.

Zhang K, Song J, Lu J, Zhao L, Deng W, Guan D Insects. 2025; 16(2).

PMID: 40003781 PMC: 11856961. DOI: 10.3390/insects16020151.


The Fast Evolution of the Stenobothrini Grasshoppers (Orthoptera, Acrididae, and Gomphocerinae) Revealed by an Analysis of the Control Region of mtDNA, with an Emphasis on the Group.

Sorokina S, Sevastianov N, Tarasova T, Vedenina V Insects. 2024; 15(8).

PMID: 39194797 PMC: 11354746. DOI: 10.3390/insects15080592.


Variation of the Tegmen and Cercus in (Orthoptera: Acrididae: Melanoplinae) with Proposal of a New Synonym.

Qiu R, Yan Y, Wang H, Huang J Insects. 2024; 15(7).

PMID: 39057259 PMC: 11276630. DOI: 10.3390/insects15070526.


The complete mitochondrial genome of (Coquerel, 1861) (Orthoptera: Pyrgomorphidae) and phylogenetic analysis.

Chang H, Liu X, Xie Z Mitochondrial DNA B Resour. 2024; 9(4):457-460.

PMID: 38591051 PMC: 11000610. DOI: 10.1080/23802359.2024.2316064.


Two Complete Mitochondrial Genomes of (Anura: Megophryidae: Leptobrachiinae): Characteristics, Population Divergences, and Phylogenetic Implications.

Zhou Q, Xiang H, Zhang M, Liu Y, Gu Z, Lan X Genes (Basel). 2023; 14(3).

PMID: 36981038 PMC: 10048368. DOI: 10.3390/genes14030768.


References
1.
Liu N, Huang Y . Complete Mitochondrial Genome Sequence of Acrida cinerea (Acrididae: Orthoptera) and Comparative Analysis of Mitochondrial Genomes in Orthoptera. Comp Funct Genomics. 2011; 2010:319486. PMC: 3004375. DOI: 10.1155/2010/319486. View

2.
Benson G . Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1998; 27(2):573-80. PMC: 148217. DOI: 10.1093/nar/27.2.573. View

3.
Sun S, Hui M, Wang M, Sha Z . The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): Insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp. Comp Biochem Physiol Part D Genomics Proteomics. 2017; 25:42-52. DOI: 10.1016/j.cbd.2017.11.002. View

4.
Flook P, Rowell C . Inferences about orthopteroid phylogeny and molecular evolution from small subunit nuclear ribosomal DNA sequences. Insect Mol Biol. 1998; 7(2):163-78. DOI: 10.1046/j.1365-2583.1998.72060.x. View

5.
Flook P, Rowell C . The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Orthoptera). Mol Phylogenet Evol. 1997; 8(2):177-92. DOI: 10.1006/mpev.1997.0425. View