» Articles » PMID: 32994450

Emerging MDR-Pseudomonas Aeruginosa in Fish Commonly Harbor OprL and ToxA Virulence Genes and Bla, Bla, and TetA Antibiotic-resistance Genes

Overview
Journal Sci Rep
Specialty Science
Date 2020 Sep 30
PMID 32994450
Citations 77
Authors
Affiliations
Soon will be listed here.
Abstract

This study aimed to investigate the prevalence, antibiogram of Pseudomonas aeruginosa (P. aeruginosa), and the distribution of virulence genes (oprL, exoS, phzM, and toxA) and the antibiotic-resistance genes (bla, tetA, and bla). A total of 285 fish (165 Oreochromis niloticus and 120 Clarias gariepinus) were collected randomly from private fish farms in Ismailia Governorate, Egypt. The collected specimens were examined bacteriologically. P. aeruginosa was isolated from 90 examined fish (31.57%), and the liver was the most prominent infected organ. The antibiogram of the isolated strains was determined using a disc diffusion method, where the tested strains exhibited multi-drug resistance (MDR) to amoxicillin, cefotaxime, tetracycline, and gentamicin. The PCR results revealed that all the examined strains harbored (oprL and toxA) virulence genes, while only 22.2% were positive for the phzM gene. On the contrary, none of the tested strains were positive for the exoS gene. Concerning the distribution of the antibiotic resistance genes, the examined strains harbored bla, bla, and tetA genes with a total prevalence of 83.3%, 77.7%, and 75.6%, respectively. Experimentally infected fish with P. aeruginosa displayed high mortalities in direct proportion to the encoded virulence genes and showed similar signs of septicemia found in the naturally infected one. In conclusion, P. aeruginosa is a major pathogen of O. niloticus and C. gariepinus. oprL and toxA genes are the most predominant virulence genes associated with P. aeruginosa infection. The bla, bla, and tetA genes are the main antibiotic-resistance genes that induce resistance patterns to cefotaxime, amoxicillin, and tetracycline, highlighting MDR P. aeruginosa strains of potential public health concern.

Citing Articles

.

Ghahari N, Mirzaei A, Esfahani B, Moghim S IJID Reg. 2025; 14:100557.

PMID: 39926042 PMC: 11803867. DOI: 10.1016/j.ijregi.2024.100557.


Prevalence and antimicrobial resistance profile of bacterial foodborne pathogens in Nile tilapia fish () at points of retail sale in Nairobi, Kenya.

Mumbo M, Nyaboga E, Kinyua J, Muge E, Mathenge S, Muriira G Front Antibiot. 2025; 2():1156258.

PMID: 39816642 PMC: 11731917. DOI: 10.3389/frabi.2023.1156258.


Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria.

Hetta H, Sirag N, Alsharif S, Alharbi A, Alkindy T, Alkhamali A Pharmaceuticals (Basel). 2024; 17(11).

PMID: 39598464 PMC: 11597525. DOI: 10.3390/ph17111555.


Multidrug resistance in Pseudomonas aeruginosa: genetic control mechanisms and therapeutic advances.

Zhao Y, Xu H, Wang H, Wang P, Chen S Mol Biomed. 2024; 5(1):62.

PMID: 39592545 PMC: 11599538. DOI: 10.1186/s43556-024-00221-y.


Detection and Localization of IL-8 and CXCR1 in Rainbow Trout Larvae in Response to Lipopolysaccharide.

Santana P, Forero J, Guzman F, Gaete S, Acosta F, Mercado L Animals (Basel). 2024; 14(19).

PMID: 39409827 PMC: 11475925. DOI: 10.3390/ani14192878.


References
1.
Ardura A, Linde A, Garcia-Vazquez E . Genetic detection of Pseudomonas spp. in commercial Amazonian fish. Int J Environ Res Public Health. 2013; 10(9):3954-66. PMC: 3799522. DOI: 10.3390/ijerph10093954. View

2.
Fadel A, Mabrok M, Aly S . Epizootics of Pseudomonas anguilliseptica among cultured seabream (Sparus aurata) populations: Control and treatment strategies. Microb Pathog. 2018; 121:1-8. DOI: 10.1016/j.micpath.2018.04.021. View

3.
Serracca L, Battistini R, Rossini I, Prearo M, Ottaviani D, Leoni F . Vibrio virulence genes in fishes collected from estuarine waters in Italy. Lett Appl Microbiol. 2011; 53(4):403-8. DOI: 10.1111/j.1472-765X.2011.03119.x. View

4.
Tripathy S, Kumar N, Mohanty S, Samanta M, Mandal R, Maiti N . Characterisation of Pseudomonas aeruginosa isolated from freshwater culture systems. Microbiol Res. 2006; 162(4):391-6. DOI: 10.1016/j.micres.2006.08.005. View

5.
Gram L, Ravn L, Rasch M, Bruhn J, Christensen A, Givskov M . Food spoilage--interactions between food spoilage bacteria. Int J Food Microbiol. 2002; 78(1-2):79-97. DOI: 10.1016/s0168-1605(02)00233-7. View