» Articles » PMID: 32982166

Nucleic Acid Therapy for β-Thalassemia

Overview
Journal Biologics
Date 2020 Sep 28
PMID 32982166
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

β-thalassemia is caused by mutations in the β-globin gene which diminishes or abolishes β-globin chain production. This reduction causes an imbalance of the α/β-globin chain ratio and contributes to the pathogenesis of the disease. Several approaches to reduce the imbalance of the α/β ratio using several nucleic acid-based technologies such as RNAi, lentiviral mediated gene therapy, splice switching oligonucleotides (SSOs) and gene editing technology have been investigated extensively. These approaches aim to reduce excess free α-globin, either by reducing the α-globin chain, restoring β-globin expression and reactivating γ-globin expression, leading a reduced disease severity, treatment necessity, treatment interval, and disease complications, thus, increasing the life quality of the patients and alleviating economic burden. Therefore, nucleic acid-based therapy might become a potential targeted therapy for β-thalassemia.

Citing Articles

Potential Use of MicroRNA Technology in Thalassemia Therapy.

Rujito L, Wardana T, Siswandari W, Nainggolan I, Sasongko T J Clin Med Res. 2024; 16(9):411-422.

PMID: 39346566 PMC: 11426174. DOI: 10.14740/jocmr5245.


Role of Hemin in the Immune Response of T Follicular Helper Lymphocytes Expressing T-Cell Immunoreceptor with Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibitory Domains, Programmed Cell Death-1, and Interleukin-21 in Allo-Auto Positive and....

Tambunan B, Ugrasena I, Aryati J Blood Med. 2023; 14:7-17.

PMID: 36660451 PMC: 9844107. DOI: 10.2147/JBM.S393134.


Impact of Hemin on Interleukin-21 Levels and Plasma Cells in Transfusion-Dependent Thalassemia with Positive and Negative Allo-Autoantibody.

Tambunan B, Ugrasena I, Aryati A Int J Gen Med. 2023; 16:47-56.

PMID: 36636711 PMC: 9830417. DOI: 10.2147/IJGM.S397317.


Molecular genetics of β-thalassemia: A narrative review.

Jaing T, Chang T, Chen S, Lin C, Wen Y, Chiu C Medicine (Baltimore). 2021; 100(45):e27522.

PMID: 34766559 PMC: 8589257. DOI: 10.1097/MD.0000000000027522.


Attitudes of Indonesian Medical Doctors and Medical Students Toward Genome Editing.

Izzah S, Setyanto D, Hasanatuludhhiyah N, Indiastuti D, Nasution Z, dArqom A J Multidiscip Healthc. 2021; 14:1017-1027.

PMID: 33981145 PMC: 8106925. DOI: 10.2147/JMDH.S303881.

References
1.
Guda S, Brendel C, Renella R, Du P, Bauer D, Canver M . miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Mol Ther. 2015; 23(9):1465-74. PMC: 4817887. DOI: 10.1038/mt.2015.113. View

2.
Antony J, Latifi N, Haque A, Lamsfus-Calle A, Daniel-Moreno A, Graeter S . Gene correction of HBB mutations in CD34 hematopoietic stem cells using Cas9 mRNA and ssODN donors. Mol Cell Pediatr. 2018; 5(1):9. PMC: 6236008. DOI: 10.1186/s40348-018-0086-1. View

3.
Miccio A, Cesari R, Lotti F, Rossi C, Sanvito F, Ponzoni M . In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of beta-thalassemia. Proc Natl Acad Sci U S A. 2008; 105(30):10547-52. PMC: 2492493. DOI: 10.1073/pnas.0711666105. View

4.
Rinaldi C, Wood M . Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2017; 14(1):9-21. DOI: 10.1038/nrneurol.2017.148. View

5.
Mansoori Derakhshan S, Shekari Khaniani M . Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development. Iran J Basic Med Sci. 2017; 20(6):700-707. PMC: 5569442. DOI: 10.22038/IJBMS.2017.8840. View