» Articles » PMID: 32974375

Lung Mechanics of Mechanically Ventilated Patients With COVID-19: Analytics With High-Granularity Ventilator Waveform Data

Overview
Specialty General Medicine
Date 2020 Sep 25
PMID 32974375
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Lung mechanics during invasive mechanical ventilation (IMV) for both prognostic and therapeutic implications; however, the full trajectory lung mechanics has never been described for novel coronavirus disease 2019 (COVID-19) patients requiring IMV. The study aimed to describe the full trajectory of lung mechanics of mechanically ventilated COVID-19 patients. The clinical and ventilator setting that can influence patient-ventilator asynchrony (PVA) and compliance were explored. Post-extubation spirometry test was performed to assess the pulmonary function after COVID-19 induced ARDS. This was a retrospective study conducted in a tertiary care hospital. All patients with IMV due to COVID-19 induced ARDS were included. High-granularity ventilator waveforms were analyzed with deep learning algorithm to obtain PVAs. Asynchrony index (AI) was calculated as the number of asynchronous events divided by the number of ventilator cycles and wasted efforts. Mortality was recorded as the vital status on hospital discharge. A total of 3,923,450 respiratory cycles in 2,778 h were analyzed (average: 24 cycles/min) for seven patients. Higher plateau pressure (Coefficient: -0.90; 95% CI: -1.02 to -0.78) and neuromuscular blockades (Coefficient: -6.54; 95% CI: -9.92 to -3.16) were associated with lower AI. Survivors showed increasing compliance over time, whereas non-survivors showed persistently low compliance. Recruitment maneuver was not able to improve lung compliance. Patients were on supine position in 1,422 h (51%), followed by prone positioning (499 h, 18%), left positioning (453 h, 16%), and right positioning (404 h, 15%). As compared with supine positioning, prone positioning was associated with 2.31 ml/cmHO (95% CI: 1.75 to 2.86; < 0.001) increase in lung compliance. Spirometry tests showed that pulmonary functions were reduced to one third of the predicted values after extubation. The study for the first time described full trajectory of lung mechanics of patients with COVID-19. The result showed that prone positioning was associated with improved compliance; higher plateau pressure and use of neuromuscular blockades were associated with lower risk of AI.

Citing Articles

Early short course of neuromuscular blocking agents in patients with COVID-19 ARDS: a propensity score analysis.

Li Bassi G, Gibbons K, Suen J, Dalton H, White N, Corley A Crit Care. 2022; 26(1):141.

PMID: 35581612 PMC: 9112652. DOI: 10.1186/s13054-022-03983-5.


An archetypal model of a breathable air-circuit in an electro-pneumatic ventilator device.

Ige E, Adetunla A, Amudipe S, Adeoye A, Glucksberg M Heliyon. 2022; 8(5):e09378.

PMID: 35529703 PMC: 9059433. DOI: 10.1016/j.heliyon.2022.e09378.


Putative Role of the Lung-Brain Axis in the Pathogenesis of COVID-19-Associated Respiratory Failure: A Systematic Review.

Gentile F, Bocci T, Coppola S, Pozzi T, Modafferi L, Priori A Biomedicines. 2022; 10(3).

PMID: 35327531 PMC: 8944980. DOI: 10.3390/biomedicines10030729.


Secondary bloodstream infection in critically ill patients with COVID-19.

Zhang J, Lan P, Yi J, Yang C, Gong X, Ge H J Int Med Res. 2021; 49(12):3000605211062783.

PMID: 34898307 PMC: 8671686. DOI: 10.1177/03000605211062783.


A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis.

Zhao Q, Liu L, Luo J, Luo Y, Wang H, Zhang Y Front Med (Lausanne). 2021; 7:637434.

PMID: 33553224 PMC: 7859637. DOI: 10.3389/fmed.2020.637434.

References
1.
Ki M . Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiol Health. 2020; 42:e2020007. PMC: 7285424. DOI: 10.4178/epih.e2020007. View

2.
Alhazzani W, Moller M, Arabi Y, Loeb M, Gong M, Fan E . Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020; 46(5):854-887. PMC: 7101866. DOI: 10.1007/s00134-020-06022-5. View

3.
Bruni A, Garofalo E, Pelaia C, Messina A, Cammarota G, Murabito P . Patient-ventilator asynchrony in adult critically ill patients. Minerva Anestesiol. 2019; 85(6):676-688. DOI: 10.23736/S0375-9393.19.13436-0. View

4.
Arnal J, Paquet J, Wysocki M, Demory D, Donati S, Granier I . Optimal duration of a sustained inflation recruitment maneuver in ARDS patients. Intensive Care Med. 2011; 37(10):1588-94. DOI: 10.1007/s00134-011-2323-0. View

5.
Vaporidi K, Babalis D, Chytas A, Lilitsis E, Kondili E, Amargianitakis V . Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2016; 43(2):184-191. DOI: 10.1007/s00134-016-4593-z. View