» Articles » PMID: 32968540

Natural Barriers: Waterfall Transit by Small Flying Animals

Overview
Journal R Soc Open Sci
Specialty Science
Date 2020 Sep 24
PMID 32968540
Authors
Affiliations
Soon will be listed here.
Abstract

Waterfalls are conspicuous geomorphological features with heterogeneous structure, complex dynamics and multiphase flows. Swifts, dippers and starlings are well-known to nest behind waterfalls, and have been reported to fly through them. For smaller fliers, by contrast, waterfalls seem to represent impenetrable barriers, but associated physical constraints and the kinematic responses of volant animals during transit are unknown. Here, we describe the flight behaviour of hummingbirds (the sister group to the swifts) and of various insect taxa as they fly through an artificial sheet waterfall. We additionally launched plastic balls at different speeds at the waterfall so as to assess the inertial dependence of sheet penetration. Hummingbirds were able to penetrate the waterfall with reductions in both their translational speed, and stroke amplitude. The body tilted more vertically and exhibited greater rotations in roll, pitch and yaw, along with increases in tail spread and pitch. The much smaller plastic balls and some flies moving at speeds greater than 2.3 m s and 1.6 m s, respectively, also overcame effects of surface tension and water momentum and passed through the waterfall; objects with lower momentum, by contrast, entered the sheet but then fell along with the moving water. Waterfalls can thus represent impenetrable physical barriers for small and slow animal fliers, and may also serve to exclude both predators and parasites from nests of some avian taxa.

References
1.
Koh J, Yang E, Jung G, Jung S, Son J, Lee S . BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects. Science. 2015; 349(6247):517-21. DOI: 10.1126/science.aab1637. View

2.
Bush S, Clayton D . Anti-parasite behaviour of birds. Philos Trans R Soc Lond B Biol Sci. 2018; 373(1751). PMC: 6000146. DOI: 10.1098/rstb.2017.0196. View

3.
Ortega-Jimenez V, Combes S . Living in a trash can: turbulent convective flows impair flight performance. J R Soc Interface. 2018; 15(147). PMC: 6228500. DOI: 10.1098/rsif.2018.0636. View

4.
Hsu S, Thakur N, Cheng B . Speed control and force-vectoring of bluebottle flies in a magnetically levitated flight mill. J Exp Biol. 2018; 222(Pt 4). DOI: 10.1242/jeb.187211. View

5.
Tomas G, Merino S, Martinez-de la Puente J, Moreno J, Morales J, Lobato E . Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia. 2008; 156(2):305-12. DOI: 10.1007/s00442-008-1001-6. View