6.
Tanaka M, Morishima I, Akagi T, Hashikawa T, Nukina N
. Intra- and intermolecular beta-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J Biol Chem. 2001; 276(48):45470-5.
DOI: 10.1074/jbc.M107502200.
View
7.
Sharma D, Sharma S, Pasha S, Brahmachari S
. Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Lett. 1999; 456(1):181-5.
DOI: 10.1016/s0014-5793(99)00933-3.
View
8.
Sivanandam V, Jayaraman M, Hoop C, Kodali R, Wetzel R, van der Wel P
. The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils. J Am Chem Soc. 2011; 133(12):4558-66.
PMC: 3109494.
DOI: 10.1021/ja110715f.
View
9.
Bhattacharyya A, Thakur A, Chellgren V, Thiagarajan G, Williams A, Chellgren B
. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol. 2005; 355(3):524-35.
DOI: 10.1016/j.jmb.2005.10.053.
View
10.
Kim Y, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel K
. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A. 2001; 98(22):12784-9.
PMC: 60131.
DOI: 10.1073/pnas.221451398.
View
11.
Kruttner S, Stepien B, Noordermeer J, Mommaas M, Mechtler K, Dickson B
. Drosophila CPEB Orb2A mediates memory independent of Its RNA-binding domain. Neuron. 2012; 76(2):383-95.
PMC: 3480640.
DOI: 10.1016/j.neuron.2012.08.028.
View
12.
Stricker-Shaver J, Novati A, Yu-Taeger L, Nguyen H
. Genetic Rodent Models of Huntington Disease. Adv Exp Med Biol. 2018; 1049:29-57.
DOI: 10.1007/978-3-319-71779-1_2.
View
13.
Keleman K, Kruttner S, Alenius M, Dickson B
. Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat Neurosci. 2007; 10(12):1587-93.
DOI: 10.1038/nn1996.
View
14.
Rockabrand E, Slepko N, Pantalone A, Nukala V, Kazantsev A, Marsh J
. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet. 2006; 16(1):61-77.
DOI: 10.1093/hmg/ddl440.
View
15.
Nucifora Jr F, Sasaki M, Peters M, Huang H, Cooper J, Yamada M
. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science. 2001; 291(5512):2423-8.
DOI: 10.1126/science.1056784.
View
16.
Hoffner G, Djian P
. Polyglutamine Aggregation in Huntington Disease: Does Structure Determine Toxicity?. Mol Neurobiol. 2014; 52(3):1297-1314.
DOI: 10.1007/s12035-014-8932-1.
View
17.
Thakur A, Jayaraman M, Mishra R, Thakur M, Chellgren V, Byeon I
. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol. 2009; 16(4):380-9.
PMC: 2706102.
DOI: 10.1038/nsmb.1570.
View
18.
Xiong K, Punihaole D, Asher S
. UV resonance Raman spectroscopy monitors polyglutamine backbone and side chain hydrogen bonding and fibrillization. Biochemistry. 2012; 51(29):5822-30.
PMC: 3415266.
DOI: 10.1021/bi300551b.
View
19.
Drombosky K, Rode S, Kodali R, Jacob T, Palladino M, Wetzel R
. Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease. Neurobiol Dis. 2018; 120:126-138.
PMC: 6186178.
DOI: 10.1016/j.nbd.2018.08.019.
View
20.
Orr H, Zoghbi H
. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007; 30:575-621.
DOI: 10.1146/annurev.neuro.29.051605.113042.
View