» Articles » PMID: 32951011

Single-cell Genomics to Understand Disease Pathogenesis

Overview
Journal J Hum Genet
Specialty Genetics
Date 2020 Sep 20
PMID 32951011
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Cells are minimal functional units in biological phenomena, and therefore single-cell analysis is needed to understand the molecular behavior leading to cellular function in organisms. In addition, omics analysis technology can be used to identify essential molecular mechanisms in an unbiased manner. Recently, single-cell genomics has unveiled hidden molecular systems leading to disease pathogenesis in patients. In this review, I summarize the recent advances in single-cell genomics for the understanding of disease pathogenesis and discuss future perspectives.

Citing Articles

Single-cell transcriptomics identifies the common perturbations of monocyte/macrophage lineage cells in inflammaging of bone marrow.

Liao P, Tong S, Du L, Mei J, Wang B, Lu Y J Orthop Translat. 2025; 50:85-96.

PMID: 39868348 PMC: 11762928. DOI: 10.1016/j.jot.2024.09.013.


Private information leakage from single-cell count matrices.

Walker C, Li X, Chakravarthy M, Lounsbery-Scaife W, Choi Y, Singh R Cell. 2024; 187(23):6537-6549.e10.

PMID: 39362221 PMC: 11568916. DOI: 10.1016/j.cell.2024.09.012.


IGF1 and CXCR4 Respectively Related With Inhibited M1 Macrophage Polarization in Keloids.

Liu Y, Han B, Tan L, Ji D, Chen X J Craniofac Surg. 2024; .

PMID: 39145631 PMC: 11556827. DOI: 10.1097/SCS.0000000000010479.


Single-cell analysis reveals a unique microenvironment in peri-implantitis.

Li J, Ye L, Dai Y, Wang H, Gao J, Shen Y J Clin Periodontol. 2024; 51(12):1665-1676.

PMID: 38566468 PMC: 11651718. DOI: 10.1111/jcpe.13982.


Stochastic modeling of a gene regulatory network driving B cell development in germinal centers.

Koshkin A, Herbach U, Rodriguez Martinez M, Gandrillon O, Crauste F PLoS One. 2024; 19(3):e0301022.

PMID: 38547073 PMC: 10977792. DOI: 10.1371/journal.pone.0301022.


References
1.
Norman T, Horlbeck M, Replogle J, Ge A, Xu A, Jost M . Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science. 2019; 365(6455):786-793. PMC: 6746554. DOI: 10.1126/science.aax4438. View

2.
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K . Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019; 16(12):1289-1296. PMC: 6884693. DOI: 10.1038/s41592-019-0619-0. View

3.
Hill A, McFaline-Figueroa J, Starita L, Gasperini M, Matreyek K, Packer J . On the design of CRISPR-based single-cell molecular screens. Nat Methods. 2018; 15(4):271-274. PMC: 5882576. DOI: 10.1038/nmeth.4604. View

4.
Satterstrom F, Kosmicki J, Wang J, Breen M, De Rubeis S, An J . Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020; 180(3):568-584.e23. PMC: 7250485. DOI: 10.1016/j.cell.2019.12.036. View

5.
Macaulay I, Haerty W, Kumar P, Li Y, Hu T, Teng M . G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015; 12(6):519-22. DOI: 10.1038/nmeth.3370. View