An Advanced Molecularly Imprinted Electrochemical Sensor for the Highly Sensitive and Selective Detection and Determination of Human IgG
Overview
Affiliations
An advanced molecularly imprinted electrochemical sensor with high sensitivity and selectivity for the detection of Human immunoglobulin G (IgG) was successfully constructed. With acrylamide imprinting systems, surface imprinting on the nanoparticles CuFeO targeted at IgG was employed to prepare molecularly imprinted polymer, which served as recognition element for the electrochemical sensor. Furthermore, the sensor harnessed a molybdenum disulfide (MoS)@nitrogen doped graphene quantum dots (N-GQDs) with ionic liquid (IL) nanocomposite for signal amplification. Under optimized experimental conditions, the sensor shortened the response time to less than 8 min, and the response was linear at the IgG concentration of 0.1-50 ng·mL with a low detection limit of 0.02 ng·mL (S/N = 3). Our findings suggested that, the sensor exhibited high detectability and long-time stability. The satisfactory results of human serum sample analysis showed that the developed IgG sensor had promising potential clinical applications in detecting IgG content.
de Araujo Andrade T, Ribeiro I, Silva T, de Souza L, Coltro W, Borges L Anal Bioanal Chem. 2024; 416(28):6345-6355.
PMID: 39251427 DOI: 10.1007/s00216-024-05520-5.
Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine.
Sun Y, Ma J, Ahmad F, Xiao Y, Guan J, Shu T Biosensors (Basel). 2024; 14(3).
PMID: 38534224 PMC: 10968534. DOI: 10.3390/bios14030117.
From the Modeling of an Electrochemical YSZ-Based Gas Sensor Used in Electrolysis Mode.
Lakhmi R, Viricelle J, Alrammouz R, Rieu M Sensors (Basel). 2024; 24(2).
PMID: 38276349 PMC: 10819029. DOI: 10.3390/s24020658.
Thawany P, Khanna A, Tiwari U, Deep A Sci Rep. 2023; 13(1):5297.
PMID: 37002282 PMC: 10064954. DOI: 10.1038/s41598-023-31152-3.
Martinez-Sade E, Martinez-Rojas F, Ramos D, Aguirre M, Armijo F Polymers (Basel). 2023; 15(5).
PMID: 36904408 PMC: 10007133. DOI: 10.3390/polym15051168.