» Articles » PMID: 32940962

Polymers for Melt Electrowriting

Overview
Date 2020 Sep 17
PMID 32940962
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Melt electrowriting (MEW) is an emerging high-resolution additive manufacturing technique based on the electrohydrodynamic processing of polymers. MEW is predominantly used to fabricate scaffolds for biomedical applications, where the microscale fiber positioning has substantial implications in its macroscopic mechanical properties. This review gives an update on the increasing number of polymers processed via MEW and different commercial sources of the gold standard poly(ε-caprolactone) (PCL). A description of MEW-processed polymers beyond PCL is introduced, including blends and coated fibers to provide specific advantages in biomedical applications. Furthermore, a perspective on printer designs and developments is highlighted, to keep expanding the variety of processable polymers for MEW.

Citing Articles

Redesigning FDM Platforms for Bio-Printing Applications.

Turker B Micromachines (Basel). 2025; 16(2).

PMID: 40047710 PMC: 11857145. DOI: 10.3390/mi16020226.


Melt electrowriting of bioglass-laden poly(ε-caprolactone) scaffolds for bone regeneration.

de Carvalho A, Cardoso L, Anselmi C, Dal-Fabbro R, Campos T, Borges A J Mater Chem B. 2025; .

PMID: 39992649 PMC: 11849773. DOI: 10.1039/d4tb02835j.


Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair.

Chen K, Liu Z, Zhou X, Zheng W, Cao H, Yang Z Biomater Res. 2025; 29():0132.

PMID: 39844867 PMC: 11751208. DOI: 10.34133/bmr.0132.


From innovation to clinic: Emerging strategies harnessing electrically conductive polymers to enhance electrically stimulated peripheral nerve repair.

Borah R, Diez Clarke D, Upadhyay J, Monaghan M Mater Today Bio. 2025; 30():101415.

PMID: 39816667 PMC: 11733191. DOI: 10.1016/j.mtbio.2024.101415.


Melt Electrowriting of Polyhydroxyalkanoates for Enzymatically Degradable Scaffolds.

Gladysz M, Ubels D, Koch M, Amirsadeghi A, Alleblas F, van Vliet S Adv Healthc Mater. 2024; 14(6):e2401504.

PMID: 39533454 PMC: 11874678. DOI: 10.1002/adhm.202401504.


References
1.
Blum C, Schlegelmilch K, Schilling T, Shridhar A, Rudert M, Jakob F . Extracellular Matrix-Modified Fiber Scaffolds as a Proadipogenic Mesenchymal Stromal Cell Delivery Platform. ACS Biomater Sci Eng. 2021; 5(12):6655-6666. DOI: 10.1021/acsbiomaterials.9b00894. View

2.
Paxton N, Lanaro M, Bo A, Crooks N, Ross M, Green N . Design tools for patient specific and highly controlled melt electrowritten scaffolds. J Mech Behav Biomed Mater. 2020; 105:103695. DOI: 10.1016/j.jmbbm.2020.103695. View

3.
Haigh J, Chuang Y, Farrugia B, Hoogenboom R, Dalton P, Dargaville T . Hierarchically Structured Porous Poly(2-oxazoline) Hydrogels. Macromol Rapid Commun. 2015; 37(1):93-99. DOI: 10.1002/marc.201500495. View

4.
Kim K, Oh H, Bae J, Kim H, Moon H, Kim S . Electrostatic-Force-Assisted Dispensing Printing of Electrochromic Gels for Low-Voltage Displays. ACS Appl Mater Interfaces. 2017; 9(22):18994-19000. DOI: 10.1021/acsami.7b00946. View

5.
Eichholz K, Hoey D . Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing. Acta Biomater. 2018; 75:140-151. DOI: 10.1016/j.actbio.2018.05.048. View