» Articles » PMID: 32938966

Copaifera Spp. Oleoresins Impair Toxoplasma Gondii Infection in Both Human Trophoblastic Cells and Human Placental Explants

Abstract

The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.

Citing Articles

Insights into the Role of Proteolytic and Adhesive Domains of Snake Venom Metalloproteinases from spp. in the Control of Infection.

Teixeira S, Fernandes T, de Souza G, Luz L, Paschoalino M, Junior J Toxins (Basel). 2025; 17(2).

PMID: 39998112 PMC: 11861417. DOI: 10.3390/toxins17020095.


Galectin-3 plays a key role in controlling infection by in human trophoblast cells and human villous explants.

Luz L, Ribeiro M, Teixeira S, de Souza G, Paschoalino M, Sousa D Front Cell Infect Microbiol. 2024; 14:1459810.

PMID: 39654979 PMC: 11625798. DOI: 10.3389/fcimb.2024.1459810.


The Search for Drugs Derived from Natural Products for Infection Treatment in the Last 20 Years - A Systematic Review.

Marques-Santos F, Xavier Faria R, Amendoeira M Curr Top Med Chem. 2024; 24(22):1960-1999.

PMID: 38952156 DOI: 10.2174/0115680266299409240606062235.


P21 recombinant protein modulates infection in different experimental models of the human maternal-fetal interface.

de Souza G, Teixeira S, Fajardo Martinez A, Silva R, Luz L, de Lima Junior J Front Immunol. 2023; 14:1243480.

PMID: 37915581 PMC: 10617204. DOI: 10.3389/fimmu.2023.1243480.


Nanoformulation-Based 1,2,3-Triazole Sulfonamides for Anti- Study.

Arafa F, Said H, Osman D, Rezki N, Aouad M, Hagar M Trop Med Infect Dis. 2023; 8(8).

PMID: 37624339 PMC: 10460005. DOI: 10.3390/tropicalmed8080401.


References
1.
Beck H, Blake D, Darde M, Felger I, Pedraza-Diaz S, Regidor-Cerrillo J . Molecular approaches to diversity of populations of apicomplexan parasites. Int J Parasitol. 2008; 39(2):175-89. DOI: 10.1016/j.ijpara.2008.10.001. View

2.
Pappas G, Roussos N, Falagas M . Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol. 2009; 39(12):1385-94. DOI: 10.1016/j.ijpara.2009.04.003. View

3.
Dubey J, Jones J . Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol. 2008; 38(11):1257-78. DOI: 10.1016/j.ijpara.2008.03.007. View

4.
Dubey J, Lago E, Gennari S, Su C, Jones J . Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology. 2012; 139(11):1375-424. DOI: 10.1017/S0031182012000765. View

5.
Minbaeva G, Schweiger A, Bodosheva A, Kuttubaev O, Hehl A, Tanner I . Toxoplasma gondii infection in Kyrgyzstan: seroprevalence, risk factor analysis, and estimate of congenital and AIDS-related toxoplasmosis. PLoS Negl Trop Dis. 2013; 7(2):e2043. PMC: 3566989. DOI: 10.1371/journal.pntd.0002043. View