» Articles » PMID: 32929093

Transition Metal Dichalcogenide Metamaterials with Atomic Precision

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Sep 15
PMID 32929093
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The ability to extract materials just a few atoms thick has led to the discoveries of graphene, monolayer transition metal dichalcogenides (TMDs), and other important two-dimensional materials. The next step in promoting the understanding and utility of flatland physics is to study the one-dimensional edges of these two-dimensional materials as well as to control the edge-plane ratio. Edges typically exhibit properties that are unique and distinctly different from those of planes and bulk. Thus, controlling the edges would allow the design of materials with combined edge-plane-bulk characteristics and tailored properties, that is, TMD metamaterials. However, the enabling technology to explore such metamaterials with high precision has not yet been developed. Here we report a facile and controllable anisotropic wet etching method that allows scalable fabrication of TMD metamaterials with atomic precision. We show that TMDs can be etched along certain crystallographic axes, such that the obtained edges are nearly atomically sharp and exclusively zigzag-terminated. This results in hexagonal nanostructures of predefined order and complexity, including few-nanometer-thin nanoribbons and nanojunctions. Thus, this method enables future studies of a broad range of TMD metamaterials through atomically precise control of the structure.

Citing Articles

Ultranarrow Semiconductor WS Nanoribbon Field-Effect Transistors.

Hoque M, Polyakov A, Munkhbat B, Iordanidou K, Agrawal A, Yankovich A Nano Lett. 2025; 25(5):1750-1757.

PMID: 39846459 PMC: 11803707. DOI: 10.1021/acs.nanolett.4c01076.


Realization of Z Topological Photonic Insulators Made from Multilayer Transition Metal Dichalcogenides.

Isoniemi T, Bouteyre P, Hu X, Benimetskiy F, Wang Y, Skolnick M ACS Nano. 2024; 18(47):32547-32555.

PMID: 39552053 PMC: 11603781. DOI: 10.1021/acsnano.4c09295.


Probing optical anapoles with fast electron beams.

Maciel-Escudero C, Yankovich A, Munkhbat B, Baranov D, Hillenbrand R, Olsson E Nat Commun. 2023; 14(1):8478.

PMID: 38123545 PMC: 10733292. DOI: 10.1038/s41467-023-43813-y.


Synthesis and Characterization of Transition Metal Dichalcogenide Nanoribbons Based on a Controllable O Etching.

Canton-Vitoria R, Hotta T, Xue M, Zhang S, Kitaura R JACS Au. 2023; 3(3):775-784.

PMID: 37006761 PMC: 10052231. DOI: 10.1021/jacsau.2c00536.


Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition.

Shen F, Zhang Z, Zhou Y, Ma J, Chen K, Chen H Nat Commun. 2022; 13(1):5597.

PMID: 36151069 PMC: 9508121. DOI: 10.1038/s41467-022-33088-0.


References
1.
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C . Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010; 10(4):1271-5. DOI: 10.1021/nl903868w. View

2.
Mak K, Lee C, Hone J, Shan J, Heinz T . Atomically thin MoS₂: a new direct-gap semiconductor. Phys Rev Lett. 2011; 105(13):136805. DOI: 10.1103/PhysRevLett.105.136805. View

3.
Peng Q, De S . Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Phys Chem Chem Phys. 2013; 15(44):19427-37. DOI: 10.1039/c3cp52879k. View

4.
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A . Single-layer MoS2 transistors. Nat Nanotechnol. 2011; 6(3):147-50. DOI: 10.1038/nnano.2010.279. View

5.
Mak K, McGill K, Park J, McEuen P . Valleytronics. The valley Hall effect in MoS₂ transistors. Science. 2014; 344(6191):1489-92. DOI: 10.1126/science.1250140. View