» Articles » PMID: 32923684

Honeybee Venom and Melittin Suppress Growth Factor Receptor Activation in HER2-enriched and Triple-negative Breast Cancer

Overview
Publisher Springer Nature
Specialty Oncology
Date 2020 Sep 14
PMID 32923684
Citations 67
Authors
Affiliations
Soon will be listed here.
Abstract

Despite decades of study, the molecular mechanisms and selectivity of the biomolecular components of honeybee () venom as anticancer agents remain largely unknown. Here, we demonstrate that honeybee venom and its major component melittin potently induce cell death, particularly in the aggressive triple-negative and HER2-enriched breast cancer subtypes. Honeybee venom and melittin suppress the activation of EGFR and HER2 by interfering with the phosphorylation of these receptors in the plasma membrane of breast carcinoma cells. Mutational studies reveal that a positively charged C-terminal melittin sequence mediates plasma membrane interaction and anticancer activity. Engineering of an RGD motif further enhances targeting of melittin to malignant cells with minimal toxicity to normal cells. Lastly, administration of melittin enhances the effect of docetaxel in suppressing breast tumor growth in an allograft model. Our work unveils a molecular mechanism underpinning the anticancer selectivity of melittin, and outlines treatment strategies to target aggressive breast cancers.

Citing Articles

Anti-Tumor Effects of Venom on Liver Cancer: In Vitro and In Vivo Studies.

Wu Y, Xiong F, Ou Z, Wang J, Cui J, Jiang L Toxins (Basel). 2025; 17(1).

PMID: 39852957 PMC: 11768937. DOI: 10.3390/toxins17010004.


Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides.

Moreno-Vargas L, Prada-Gracia D Int J Mol Sci. 2025; 26(1.

PMID: 39795918 PMC: 11720145. DOI: 10.3390/ijms26010059.


Cancer-Targeting Applications of Cell-Penetrating Peptides.

Moreno-Vargas L, Prada-Gracia D Int J Mol Sci. 2025; 26(1.

PMID: 39795861 PMC: 11720565. DOI: 10.3390/ijms26010002.


Dimerization and lysine substitution of melittin have differing effects on bacteria.

Matthyssen T, Li W, Holden J, Lenzo J, Hadjigol S, OBrien-Simpson N Front Pharmacol. 2024; 15:1443497.

PMID: 39434904 PMC: 11492869. DOI: 10.3389/fphar.2024.1443497.


In vitro cytotoxicity assessment of biosynthesized Apis mellifera bee venom nanoparticles (BVNPs) against MCF-7 breast cancer cell lines.

Jadhav V, Bhagare A, Palake A, Kodam K, Dhaygude A, Kardel A Discov Nano. 2024; 19(1):170.

PMID: 39402248 PMC: 11473470. DOI: 10.1186/s11671-024-04123-4.


References
1.
Barrajon-Catalan E, Menendez-Gutierrez M, Falco A, Carrato A, Saceda M, Micol V . Selective death of human breast cancer cells by lytic immunoliposomes: Correlation with their HER2 expression level. Cancer Lett. 2009; 290(2):192-203. DOI: 10.1016/j.canlet.2009.09.010. View

2.
Prat A, Parker J, Karginova O, Fan C, Livasy C, Herschkowitz J . Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010; 12(5):R68. PMC: 3096954. DOI: 10.1186/bcr2635. View

3.
Wu G, Sinclair C, Paape J, Ingle J, Roche P, James C . 17q23 amplifications in breast cancer involve the PAT1, RAD51C, PS6K, and SIGma1B genes. Cancer Res. 2000; 60(19):5371-5. View

4.
Liang S, van Lengerich B, Eichel K, Cha M, Patterson D, Yoon T . Phosphorylated EGFR Dimers Are Not Sufficient to Activate Ras. Cell Rep. 2018; 22(10):2593-2600. PMC: 5916813. DOI: 10.1016/j.celrep.2018.02.031. View

5.
Sigismund S, Avanzato D, Lanzetti L . Emerging functions of the EGFR in cancer. Mol Oncol. 2017; 12(1):3-20. PMC: 5748484. DOI: 10.1002/1878-0261.12155. View