» Articles » PMID: 32922307

Surfactant-Mediated Airway and Acinar Interactions in a Multi-Scale Model of a Healthy Lung

Overview
Journal Front Physiol
Date 2020 Sep 14
PMID 32922307
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

We present a computational multi-scale model of an adult human lung that combines dynamic surfactant physicochemical interactions and parenchymal tethering between ~16 generations of airways and subtended acini. This model simulates the healthy lung by modeling nonlinear stress distributions from airway/alveolar interdependency. In concert with multi-component surfactant transport processes, this serves to stabilize highly compliant interacting structures. This computational model, with ~10 k degrees of freedom, demonstrates physiological processes in the normal lung such as multi-layer surfactant transport and pressure-volume hysteresis behavior. Furthermore, this model predicts non-equilibrium stress distributions due to compliance mismatches between airway and alveolar structures. This computational model provides a baseline for the exploration of multi-scale interactions of pathological conditions that can further our understanding of disease processes and guide the development of protective ventilation strategies for the treatment of acute respiratory distress syndrome (ARDS).

Citing Articles

An image-based biophysical model of the lung to investigate the effect of pulmonary surfactant on lung function.

Neelakantan S, Myers K, Rizi R, Smith B, Avazmohammadi R bioRxiv. 2025; .

PMID: 40027704 PMC: 11870450. DOI: 10.1101/2025.02.15.638361.


Full-lung simulations of mechanically ventilated lungs incorporating recruitment/derecruitment dynamics.

Ma H, Fujioka H, Halpern D, Bates J, Gaver 3rd D Front Netw Physiol. 2023; 3:1257710.

PMID: 38020240 PMC: 10654632. DOI: 10.3389/fnetp.2023.1257710.


Study on the flow mechanism and frequency characteristics of rales in lower respiratory tract.

Jin Y, Liu Z, Hu C, Dong Z, Rong R, Liu H Biomech Model Mechanobiol. 2023; 23(1):227-239.

PMID: 37831284 DOI: 10.1007/s10237-023-01769-4.


Computational lung modelling in respiratory medicine.

Neelakantan S, Xin Y, Gaver D, Cereda M, Rizi R, Smith B J R Soc Interface. 2022; 19(191):20220062.

PMID: 35673857 PMC: 9174712. DOI: 10.1098/rsif.2022.0062.


Towards a multi-scale computer modeling workflow for simulation of pulmonary ventilation in advanced COVID-19.

Middleton S, Dimbath E, Pant A, George S, Maddipati V, Peach M Comput Biol Med. 2022; 145:105513.

PMID: 35447459 PMC: 9005224. DOI: 10.1016/j.compbiomed.2022.105513.

References
1.
Lambert R, Wilson T, Hyatt R, Rodarte J . A computational model for expiratory flow. J Appl Physiol Respir Environ Exerc Physiol. 1982; 52(1):44-56. DOI: 10.1152/jappl.1982.52.1.44. View

2.
Cassidy K, Halpern D, Ressler B, Grotberg J . Surfactant effects in model airway closure experiments. J Appl Physiol (1985). 1999; 87(1):415-27. DOI: 10.1152/jappl.1999.87.1.415. View

3.
Venegas J, Harris R, Simon B . A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol (1985). 1998; 84(1):389-95. DOI: 10.1152/jappl.1998.84.1.389. View

4.
Fujioka H, Halpern D, Gaver 3rd D . A model of surfactant-induced surface tension effects on the parenchymal tethering of pulmonary airways. J Biomech. 2012; 46(2):319-28. DOI: 10.1016/j.jbiomech.2012.11.031. View

5.
Suki B, Bates J . Lung tissue mechanics as an emergent phenomenon. J Appl Physiol (1985). 2011; 110(4):1111-8. PMC: 3075131. DOI: 10.1152/japplphysiol.01244.2010. View