» Articles » PMID: 32920696

Intercellular Trafficking Via Plasmodesmata: Molecular Layers of Complexity

Overview
Publisher Springer
Specialty Biology
Date 2020 Sep 13
PMID 32920696
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.

Citing Articles

Turnip mosaic virus selectively subverts a PR-5 thaumatin-like, plasmodesmal protein to promote viral infection.

He R, Li Y, Bernards M, Wang A New Phytol. 2024; 245(1):299-317.

PMID: 39532690 PMC: 11617660. DOI: 10.1111/nph.20233.


Chitosan and its derivatives regulate lactic acid synthesis during milk fermentation.

Kurchenko V, Halavach T, Yantsevich A, Shramko M, Alieva L, Evdokimov I Front Nutr. 2024; 11:1441355.

PMID: 39351492 PMC: 11439701. DOI: 10.3389/fnut.2024.1441355.


Advances in understanding the graft healing mechanism: a review of factors and regulatory pathways.

Wang L, Liao Y, Liu J, Zhao T, Jia L, Chen Z Hortic Res. 2024; 11(8):uhae175.

PMID: 39108577 PMC: 11301322. DOI: 10.1093/hr/uhae175.


Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function.

Wegner L, Ehlers K Planta. 2024; 260(2):45.

PMID: 38965075 PMC: 11224097. DOI: 10.1007/s00425-024-04476-1.


Vacuolar degradation of plant organelles.

Otegui M, Steelheart C, Ma W, Ma J, Kang B, De Medina Hernandez V Plant Cell. 2024; 36(9):3036-3056.

PMID: 38657116 PMC: 11371181. DOI: 10.1093/plcell/koae128.


References
1.
Sager R, Lee J . Plasmodesmata at a glance. J Cell Sci. 2018; 131(11). DOI: 10.1242/jcs.209346. View

2.
Park K, Knoblauch J, Oparka K, Jensen K . Controlling intercellular flow through mechanosensitive plasmodesmata nanopores. Nat Commun. 2019; 10(1):3564. PMC: 6687729. DOI: 10.1038/s41467-019-11201-0. View

3.
Sartori-Rupp A, Cordero Cervantes D, Pepe A, Gousset K, Delage E, Corroyer-Dulmont S . Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat Commun. 2019; 10(1):342. PMC: 6341166. DOI: 10.1038/s41467-018-08178-7. View

4.
Lee J, Wang X, Cui W, Sager R, Modla S, Czymmek K . A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell. 2011; 23(9):3353-73. PMC: 3203451. DOI: 10.1105/tpc.111.087742. View

5.
Ehlers K, Kollmann R . Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma. 2001; 216(1-2):1-30. DOI: 10.1007/BF02680127. View