» Articles » PMID: 32917907

Diversity Analysis of 80,000 Wheat Accessions Reveals Consequences and Opportunities of Selection Footprints

Abstract

Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseq technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs.

Citing Articles

Genome-wide association study identifies QTL and candidate genes for grain size and weight in a Triticum turgidum collection.

Mangini G, Nigro D, Curci P, Simeone R, Blanco A Plant Genome. 2025; 18(1):e20562.

PMID: 39868635 PMC: 11771687. DOI: 10.1002/tpg2.20562.


Genotyping Genebank Collections: Strategic Approaches and Considerations for Optimal Collection Management.

Anglin N, Wenzl P, Azevedo V, Lusty C, Ellis D, Gao D Plants (Basel). 2025; 14(2).

PMID: 39861604 PMC: 11768347. DOI: 10.3390/plants14020252.


Exploring the genetic diversity and population structure of an ancient hexaploid wheat species Triticum sphaerococcum using SNP markers.

Mazumder A, Budhlakoti N, Kumar M, Pradhan A, Kumar S, Babu P BMC Plant Biol. 2024; 24(1):1188.

PMID: 39695987 PMC: 11656872. DOI: 10.1186/s12870-024-05968-8.


Efficient large-scale genomic prediction in approximate genome-based kernel model.

Liu H, Xu J, Wang X, Wang H, Wang L, Shen Y Theor Appl Genet. 2024; 138(1):6.

PMID: 39666050 DOI: 10.1007/s00122-024-04793-9.


Cytogenetic and molecular identification of novel wheat- addition lines with resistance to leaf rust and the presence of leaf pubescence trait.

Motsnyi I, Halaiev O, Alieksieieva T, Chebotar G, Chebotar S, Betekhtin A Front Plant Sci. 2024; 15:1482211.

PMID: 39600899 PMC: 11588455. DOI: 10.3389/fpls.2024.1482211.


References
1.
Goel S, Yadav M, Singh K, Jaat R, Singh N . Exploring diverse wheat germplasm for novel alleles in HMW-GS for bread quality improvement. J Food Sci Technol. 2018; 55(8):3257-3262. PMC: 6046000. DOI: 10.1007/s13197-018-3259-y. View

2.
Talebnia F, Karakashev D, Angelidaki I . Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour Technol. 2009; 101(13):4744-53. DOI: 10.1016/j.biortech.2009.11.080. View

3.
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B . Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J. 2014; 12(6):787-96. PMC: 4265271. DOI: 10.1111/pbi.12183. View

4.
Tanksley S, McCouch S . Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997; 277(5329):1063-6. DOI: 10.1126/science.277.5329.1063. View

5.
Reif J, Zhang P, Dreisigacker S, Warburton M, van Ginkel M, Hoisington D . Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet. 2005; 110(5):859-64. DOI: 10.1007/s00122-004-1881-8. View