» Articles » PMID: 32913289

Floral Transcriptomes Reveal Gene Networks in Pineapple Floral Growth and Fruit Development

Overview
Journal Commun Biol
Specialty Biology
Date 2020 Sep 11
PMID 32913289
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Proper flower development is essential for sexual reproductive success and the setting of fruits and seeds. The availability of a high quality genome sequence for pineapple makes it an excellent model for studying fruit and floral organ development. In this study, we sequenced 27 different pineapple floral samples and integrated nine published RNA-seq datasets to generate tissue- and stage-specific transcriptomic profiles. Pairwise comparisons and weighted gene co-expression network analysis successfully identified ovule-, stamen-, petal- and fruit-specific modules as well as hub genes involved in ovule, fruit and petal development. In situ hybridization confirmed the enriched expression of six genes in developing ovules and stamens. Mutant characterization and complementation analysis revealed the important role of the subtilase gene AcSBT1.8 in petal development. This work provides an important genomic resource for functional analysis of pineapple floral organ growth and fruit development and sheds light on molecular networks underlying pineapple reproductive organ growth.

Citing Articles

The GRAS gene family and its roles in pineapple (Ananas comosus L.) developmental regulation and cold tolerance.

Lin J, Wu J, Zhang D, Cai X, Du L, Lu L BMC Plant Biol. 2024; 24(1):1204.

PMID: 39701971 PMC: 11657692. DOI: 10.1186/s12870-024-05913-9.


The Transcriptional Landscape of Berry Skin in Red and White PIWI ("Pilzwiderstandsfähig") Grapevines Possessing QTLs for Partial Resistance to Downy and Powdery Mildews.

Scariolo F, Gabelli G, Magon G, Palumbo F, Pirrello C, Farinati S Plants (Basel). 2024; 13(18).

PMID: 39339549 PMC: 11434962. DOI: 10.3390/plants13182574.


Genome-Wide Identification and Characterization of Gibberellic Acid-Stimulated Arabidopsis Gene Family in Pineapple ().

Yang M, Liu C, Zhang W, Wu J, Zhong Z, Yi W Int J Mol Sci. 2023; 24(23).

PMID: 38069384 PMC: 10706908. DOI: 10.3390/ijms242317063.


Differential gene expression during floral transition in pineapple.

Paull R, Ksouri N, Kantar M, Zerpa-Catanho D, Chen N, Uruu G Plant Direct. 2023; 7(11):e541.

PMID: 38028646 PMC: 10644199. DOI: 10.1002/pld3.541.


Pineapple SWEET10 is a glucose transporter.

Fakher B, Arif Ashraf M, Wang L, Wang X, Zheng P, Aslam M Hortic Res. 2023; 10(10):uhad175.

PMID: 38025977 PMC: 10660354. DOI: 10.1093/hr/uhad175.


References
1.
Liao Y, Smyth G, Shi W . featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013; 30(7):923-30. DOI: 10.1093/bioinformatics/btt656. View

2.
Johnston A, Meier P, Gheyselinck J, Wuest S, Federer M, Schlagenhauf E . Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol. 2007; 8(10):R204. PMC: 2246279. DOI: 10.1186/gb-2007-8-10-r204. View

3.
Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R . Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2006; 2(8):e130. PMC: 1550283. DOI: 10.1371/journal.pgen.0020130. View

4.
Tisza V, Kovacs L, Balogh A, Heszky L, Kiss E . Characterization of FaSPT, a SPATULA gene encoding a bHLH transcriptional factor from the non-climacteric strawberry fruit. Plant Physiol Biochem. 2010; 48(10-11):822-6. DOI: 10.1016/j.plaphy.2010.08.001. View

5.
Wang Q, Guo Q, Guo Y, Yang J, Wang M, Duan X . Arabidopsis subtilase SASP is involved in the regulation of ABA signaling and drought tolerance by interacting with OPEN STOMATA 1. J Exp Bot. 2018; 69(18):4403-4417. DOI: 10.1093/jxb/ery205. View