» Articles » PMID: 32903344

Technical Feasibility of Constant-load and High-intensity Interval Training for Cardiopulmonary Conditioning Using a Re-engineered Dynamic Leg Press

Overview
Journal BMC Biomed Eng
Date 2020 Sep 9
PMID 32903344
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Leg-press devices are one of the most widely used training tools for musculoskeletal strengthening of the lower-limbs, and have demonstrated important cardiopulmonary benefits for healthy and patient populations. Further engineering development was done on a dynamic leg-press for work-rate estimation by integrating force and motion sensors, power calculation and a visual feedback system for volitional work-rate control. This study aimed to assess the feasibility of the enhanced dynamic leg press for cardiopulmonary exercise training in constant-load training and high-intensity interval training. Five healthy participants aged 31.0±3.9 years (mean ± standard deviation) performed two cardiopulmonary training sessions: constant-load training and high-intensity interval training. Participants carried out the training sessions at a work rate that corresponds to their first ventilatory threshold for constant-load training, and their second ventilatory threshold for high-intensity interval training.

Results: All participants tolerated both training protocols, and could complete the training sessions with no complications. Substantial cardiopulmonary responses were observed. The difference between mean oxygen uptake and target oxygen uptake was 0.07±0.34 L/min (103 ±17%) during constant-load training, and 0.35±0.66 L/min (113 ±27%) during high-intensity interval training. The difference between mean heart rate and target heart rate was -7±19 bpm (94 ±15%) during constant-load training, and 4.2±16 bpm (103 ±12%) during high-intensity interval training.

Conclusions: The enhanced dynamic leg press was found to be feasible for cardiopulmonary exercise training, and for exercise prescription for different training programmes based on the ventilatory thresholds.

Citing Articles

Usability evaluation of an interactive leg press training robot for children with neuromuscular impairments.

Chrif F, van Hedel H, Vivian M, Nef T, Hunt K Technol Health Care. 2022; 30(5):1183-1197.

PMID: 35342069 PMC: 9535578. DOI: 10.3233/THC-213629.

References
1.
Ribeiro P, Boidin M, Juneau M, Nigam A, Gayda M . High-intensity interval training in patients with coronary heart disease: Prescription models and perspectives. Ann Phys Rehabil Med. 2016; 60(1):50-57. DOI: 10.1016/j.rehab.2016.04.004. View

2.
Chrif F, Nef T, Hunt K . Investigation of cardiopulmonary exercise testing using a dynamic leg press and comparison with a cycle ergometer. BMC Sports Sci Med Rehabil. 2018; 10:5. PMC: 5815210. DOI: 10.1186/s13102-018-0095-3. View

3.
Buchfuhrer M, Hansen J, Robinson T, Sue D, Wasserman K, Whipp B . Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983; 55(5):1558-64. DOI: 10.1152/jappl.1983.55.5.1558. View

4.
Michaut A, Babault N, Pousson M . Specific effects of eccentric training on muscular fatigability. Int J Sports Med. 2004; 25(4):278-83. DOI: 10.1055/s-2004-819940. View

5.
Astorino T, Schubert M . Individual responses to completion of short-term and chronic interval training: a retrospective study. PLoS One. 2014; 9(5):e97638. PMC: 4029621. DOI: 10.1371/journal.pone.0097638. View