» Articles » PMID: 32902377

Speciation and the Developmental Alarm Clock

Overview
Journal Elife
Specialty Biology
Date 2020 Sep 9
PMID 32902377
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

New species arise as the genomes of populations diverge. The developmental 'alarm clock' of speciation sounds off when sufficient divergence in genetic control of development leads hybrid individuals to infertility or inviability, the world awoken to the dawn of new species with intrinsic post-zygotic reproductive isolation. Some developmental stages will be more prone to hybrid dysfunction due to how molecular evolution interacts with the ontogenetic timing of gene expression. Considering the ontogeny of hybrid incompatibilities provides a profitable connection between 'evo-devo' and speciation genetics to better link macroevolutionary pattern, microevolutionary process, and molecular mechanisms. Here, we explore speciation alongside development, emphasizing their mutual dependence on genetic network features, fitness landscapes, and developmental system drift. We assess models for how ontogenetic timing of reproductive isolation can be predictable. Experiments and theory within this synthetic perspective can help identify new rules of speciation as well as rules in the molecular evolution of development.

Citing Articles

Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation.

Semon M, Mouginot M, Peltier M, Corneloup C, Veber P, Gueguen L Nat Commun. 2025; 16(1):768.

PMID: 39824799 PMC: 11742040. DOI: 10.1038/s41467-025-55826-w.


Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses.

Hunnicutt K, Callahan C, Callahan C, Keeble S, Moore E, Good J Genetics. 2024; 229(2).

PMID: 39601270 PMC: 11796465. DOI: 10.1093/genetics/iyae198.


Beyond Haldane's rule: Sex-biased hybrid dysfunction for all modes of sex determination.

Cutter A Elife. 2024; 13.

PMID: 39158559 PMC: 11333046. DOI: 10.7554/eLife.96652.


Gene Protein Sequence Evolution Can Predict the Rapid Divergence of Ovariole Numbers in the Drosophila melanogaster Subgroup.

Whittle C, Extavour C Genome Biol Evol. 2024; 16(7).

PMID: 38848313 PMC: 11272079. DOI: 10.1093/gbe/evae118.


Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses.

Hunnicutt K, Callahan C, Keeble S, Moore E, Good J, Larson E bioRxiv. 2023; .

PMID: 37961317 PMC: 10634954. DOI: 10.1101/2023.10.30.564782.


References
1.
Kelleher E, Edelman N, Barbash D . Drosophila interspecific hybrids phenocopy piRNA-pathway mutants. PLoS Biol. 2012; 10(11):e1001428. PMC: 3506263. DOI: 10.1371/journal.pbio.1001428. View

2.
Crespi B, Nosil P . Conflictual speciation: species formation via genomic conflict. Trends Ecol Evol. 2012; 28(1):48-57. DOI: 10.1016/j.tree.2012.08.015. View

3.
Barbash D, Siino D, Tarone A, Roote J . A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc Natl Acad Sci U S A. 2003; 100(9):5302-7. PMC: 154340. DOI: 10.1073/pnas.0836927100. View

4.
McManus C, Coolon J, Duff M, Eipper-Mains J, Graveley B, Wittkopp P . Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res. 2010; 20(6):816-25. PMC: 2877578. DOI: 10.1101/gr.102491.109. View

5.
Ehrenreich I, Torabi N, Jia Y, Kent J, Martis S, Shapiro J . Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature. 2010; 464(7291):1039-42. PMC: 2862354. DOI: 10.1038/nature08923. View