» Articles » PMID: 32899408

On Viscous Flow in Glass-Forming Organic Liquids

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2020 Sep 9
PMID 32899408
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The two-exponential Sheffield equation of viscosity η(T) = A·T·[1 + A·exp(H/RT)]·[1 + C·exp(H/RT)], where A, A, H, C, and H are material-specific constants, is used to analyze the viscous flows of two glass-forming organic materials-salol and α-phenyl--cresol. It is demonstrated that the viscosity equation can be simplified to a four-parameter version: η(T) = A·T·exp(H/RT)]·[1 + C·exp(H/RT)]. The Sheffield model gives a correct description of viscosity, with two exact Arrhenius-type asymptotes below and above the glass transition temperature, whereas near the T it gives practically the same results as well-known and widely used viscosity equations. It is revealed that the constants of the Sheffield equation are not universal for all temperature ranges and may need to be updated for very high temperatures, where changes occur in melt properties leading to modifications of A and H for both salol and α-phenyl--cresol.

Citing Articles

The Minima of Viscosities.

Ojovan M, Louzguine-Luzgin D Materials (Basel). 2024; 17(8).

PMID: 38673178 PMC: 11051500. DOI: 10.3390/ma17081822.


On Crossover Temperatures of Viscous Flow Related to Structural Rearrangements in Liquids.

Ojovan M, Louzguine-Luzgin D Materials (Basel). 2024; 17(6).

PMID: 38541415 PMC: 10972125. DOI: 10.3390/ma17061261.


The Flow of Glasses and Glass-Liquid Transition under Electron Irradiation.

Ojovan M Int J Mol Sci. 2023; 24(15).

PMID: 37569496 PMC: 10418639. DOI: 10.3390/ijms241512120.


Large surface deformation due to thermo-mechanical effects during cryopreservation by vitrification - mathematical model and experimental validation.

Vispute D, Solanki P, Rabin Y PLoS One. 2023; 18(3):e0282613.

PMID: 36893176 PMC: 9997942. DOI: 10.1371/journal.pone.0282613.


New paradigm for configurational entropy in glass-forming systems.

Drozd-Rzoska A, Rzoska S, Starzonek S Sci Rep. 2022; 12(1):3058.

PMID: 35197481 PMC: 8866542. DOI: 10.1038/s41598-022-05897-2.


References
1.
Nemilov S . On the Possibility of Calculating Entropy, Free Energy, and Enthalpy of Vitreous Substances. Entropy (Basel). 2020; 20(3). PMC: 7512703. DOI: 10.3390/e20030187. View

2.
Tarjus G, Kivelson D, Mossa S, Alba-Simionesco C . Disentangling density and temperature effects in the viscous slowing down of glassforming liquids. J Chem Phys. 2004; 120(13):6135-41. DOI: 10.1063/1.1649732. View

3.
Ojovan M, Louzguine-Luzgin D . Revealing Structural Changes at Glass Transition via Radial Distribution Functions. J Phys Chem B. 2020; 124(15):3186-3194. DOI: 10.1021/acs.jpcb.0c00214. View

4.
Tong H, Tanaka H . Role of Attractive Interactions in Structure Ordering and Dynamics of Glass-Forming Liquids. Phys Rev Lett. 2020; 124(22):225501. DOI: 10.1103/PhysRevLett.124.225501. View

5.
Trachenko K, Brazhkin V . Minimal quantum viscosity from fundamental physical constants. Sci Adv. 2020; 6(17):eaba3747. PMC: 7182420. DOI: 10.1126/sciadv.aba3747. View