On Viscous Flow in Glass-Forming Organic Liquids
Overview
Authors
Affiliations
The two-exponential Sheffield equation of viscosity η(T) = A·T·[1 + A·exp(H/RT)]·[1 + C·exp(H/RT)], where A, A, H, C, and H are material-specific constants, is used to analyze the viscous flows of two glass-forming organic materials-salol and α-phenyl--cresol. It is demonstrated that the viscosity equation can be simplified to a four-parameter version: η(T) = A·T·exp(H/RT)]·[1 + C·exp(H/RT)]. The Sheffield model gives a correct description of viscosity, with two exact Arrhenius-type asymptotes below and above the glass transition temperature, whereas near the T it gives practically the same results as well-known and widely used viscosity equations. It is revealed that the constants of the Sheffield equation are not universal for all temperature ranges and may need to be updated for very high temperatures, where changes occur in melt properties leading to modifications of A and H for both salol and α-phenyl--cresol.
Ojovan M, Louzguine-Luzgin D Materials (Basel). 2024; 17(8).
PMID: 38673178 PMC: 11051500. DOI: 10.3390/ma17081822.
On Crossover Temperatures of Viscous Flow Related to Structural Rearrangements in Liquids.
Ojovan M, Louzguine-Luzgin D Materials (Basel). 2024; 17(6).
PMID: 38541415 PMC: 10972125. DOI: 10.3390/ma17061261.
The Flow of Glasses and Glass-Liquid Transition under Electron Irradiation.
Ojovan M Int J Mol Sci. 2023; 24(15).
PMID: 37569496 PMC: 10418639. DOI: 10.3390/ijms241512120.
Vispute D, Solanki P, Rabin Y PLoS One. 2023; 18(3):e0282613.
PMID: 36893176 PMC: 9997942. DOI: 10.1371/journal.pone.0282613.
New paradigm for configurational entropy in glass-forming systems.
Drozd-Rzoska A, Rzoska S, Starzonek S Sci Rep. 2022; 12(1):3058.
PMID: 35197481 PMC: 8866542. DOI: 10.1038/s41598-022-05897-2.