» Articles » PMID: 32897232

Usability of Individualized Head-Related Transfer Functions in Virtual Reality: Empirical Study With Perceptual Attributes in Sagittal Plane Sound Localization

Overview
Publisher JMIR Publications
Date 2020 Sep 8
PMID 32897232
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Background: In order to present virtual sound sources via headphones spatially, head-related transfer functions (HRTFs) can be applied to audio signals. In this so-called binaural virtual acoustics, the spatial perception may be degraded if the HRTFs deviate from the true HRTFs of the listener.

Objective: In this study, participants wearing virtual reality (VR) headsets performed a listening test on the 3D audio perception of virtual audiovisual scenes, thus enabling us to investigate the necessity and influence of the individualization of HRTFs. Two hypotheses were investigated: first, general HRTFs lead to limitations of 3D audio perception in VR and second, the localization model for stationary localization errors is transferable to nonindividualized HRTFs in more complex environments such as VR.

Methods: For the evaluation, 39 subjects rated individualized and nonindividualized HRTFs in an audiovisual virtual scene on the basis of 5 perceptual qualities: localizability, front-back position, externalization, tone color, and realism. The VR listening experiment consisted of 2 tests: in the first test, subjects evaluated their own and the general HRTF from the Massachusetts Institute of Technology Knowles Electronics Manikin for Acoustic Research database and in the second test, their own and 2 other nonindividualized HRTFs from the Acoustics Research Institute HRTF database. For the experiment, 2 subject-specific, nonindividualized HRTFs with a minimal and maximal localization error deviation were selected according to the localization model in sagittal planes.

Results: With the Wilcoxon signed-rank test for the first test, analysis of variance for the second test, and a sample size of 78, the results were significant in all perceptual qualities, except for the front-back position between own and minimal deviant nonindividualized HRTF (P=.06).

Conclusions: Both hypotheses have been accepted. Sounds filtered by individualized HRTFs are considered easier to localize, easier to externalize, more natural in timbre, and thus more realistic compared to sounds filtered by nonindividualized HRTFs.

Citing Articles

Virtual Reality-Based Exercise Rehabilitation in Cancer-Related Dysfunctions: Scoping Review.

Su Z, Zhang L, Lian X, Guan M J Med Internet Res. 2024; 26:e49312.

PMID: 38407951 PMC: 10928524. DOI: 10.2196/49312.


Feasibility of Virtual Reality-Based Auditory Localization Training With Binaurally Recorded Auditory Stimuli for Patients With Single-Sided Deafness.

Shim L, Lee J, Han J, Jeon H, Hong S, Lee H Clin Exp Otorhinolaryngol. 2023; 16(3):217-224.

PMID: 37080730 PMC: 10471910. DOI: 10.21053/ceo.2023.00206.


Wrapped into sound: Development of the Immersive Music Experience Inventory (IMEI).

Wycisk Y, Sander K, Kopiez R, Platz F, Preihs S, Peissig J Front Psychol. 2022; 13:951161.

PMID: 36186277 PMC: 9524455. DOI: 10.3389/fpsyg.2022.951161.

References
1.
Begault D, Wenzel E, Anderson M . Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. J Audio Eng Soc. 2002; 49(10):904-16. View

2.
Middlebrooks J . Sound localization. Handb Clin Neurol. 2015; 129:99-116. DOI: 10.1016/B978-0-444-62630-1.00006-8. View

3.
Wightman F, Kistler D . Headphone simulation of free-field listening. II: Psychophysical validation. J Acoust Soc Am. 1989; 85(2):868-78. DOI: 10.1121/1.397558. View

4.
Parseihian G, Katz B . Rapid head-related transfer function adaptation using a virtual auditory environment. J Acoust Soc Am. 2012; 131(4):2948-57. DOI: 10.1121/1.3687448. View

5.
Jerdan S, Grindle M, van Woerden H, Kamel Boulos M . Head-Mounted Virtual Reality and Mental Health: Critical Review of Current Research. JMIR Serious Games. 2018; 6(3):e14. PMC: 6054705. DOI: 10.2196/games.9226. View