» Articles » PMID: 32893004

Inhaled RNA Therapy: From Promise to Reality

Overview
Specialty Pharmacology
Date 2020 Sep 7
PMID 32893004
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

RNA-based medicine is receiving growing attention for its diverse roles and potential therapeutic capacity. The largest obstacle in its clinical translation remains identifying a safe and effective delivery system. Studies investigating RNA therapeutics in pulmonary diseases have rapidly expanded and drug administration by inhalation allows the direct delivery of RNA therapeutics to the target site of action while minimizing systemic exposure. In this review, we highlight recent developments in pulmonary RNA delivery systems with the use of nonviral vectors. We also discuss the major knowledge gaps that require thorough investigation and provide insights that will help advance this exciting field towards the bedside.

Citing Articles

Robust peptide/RNA complexes prepared with microfluidic mixing for pulmonary delivery by nebulisation.

Ma C, Chow M, Zhang C, Goldbaum P, Hsieh J, Lam J Drug Deliv Transl Res. 2025; .

PMID: 39827227 DOI: 10.1007/s13346-024-01773-w.


Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination.

Liu S, Wen Y, Shan X, Ma X, Yang C, Cheng X Nat Commun. 2024; 15(1):9471.

PMID: 39488531 PMC: 11531489. DOI: 10.1038/s41467-024-53914-x.


Current status and trends in small nucleic acid drug development: Leading the future.

Miao Y, Fu C, Yu Z, Yu L, Tang Y, Wei M Acta Pharm Sin B. 2024; 14(9):3802-3817.

PMID: 39309508 PMC: 11413693. DOI: 10.1016/j.apsb.2024.05.008.


Aerosol Inhalation of Gene Delivery Therapy for Pulmonary Diseases.

Huang Y, Zhang J, Wang X, Jing H, Li H Biomolecules. 2024; 14(8).

PMID: 39199292 PMC: 11352762. DOI: 10.3390/biom14080904.


Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency.

Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X Adv Sci (Weinh). 2024; 11(18):e2309748.

PMID: 38460157 PMC: 11095210. DOI: 10.1002/advs.202309748.


References
1.
Tashiro J, Rubio G, Limper A, Williams K, Elliot S, Ninou I . Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med (Lausanne). 2017; 4:118. PMC: 5532376. DOI: 10.3389/fmed.2017.00118. View

2.
Labiris N, Dolovich M . Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003; 56(6):588-99. PMC: 1884307. DOI: 10.1046/j.1365-2125.2003.01892.x. View

3.
Habibovic A, Hristova M, Heppner D, Danyal K, Ather J, Janssen-Heininger Y . DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight. 2016; 1(18):e88811. PMC: 5085603. DOI: 10.1172/jci.insight.88811. View

4.
Moliva J, Rajaram M, Sidiki S, Sasindran S, Guirado E, Pan X . Molecular composition of the alveolar lining fluid in the aging lung. Age (Dordr). 2014; 36(3):9633. PMC: 4082594. DOI: 10.1007/s11357-014-9633-4. View

5.
Dong J, Liao W, Peh H, Tan W, Zhou S, Wong W . Ribosomal Protein S3 Gene Silencing Protects Against Cigarette Smoke-Induced Acute Lung Injury. Mol Ther Nucleic Acids. 2018; 12:370-380. PMC: 6031153. DOI: 10.1016/j.omtn.2018.05.027. View