» Articles » PMID: 32887862

Crystallographic Evidence for Unintended Benzisothiazolinone 1-oxide Formation from Benzothiazinones Through Oxidation

Overview
Specialty Chemistry
Date 2020 Sep 5
PMID 32887862
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

1,3-Benzothiazin-4-ones (BTZs) are a promising new class of drugs with activity against Mycobacterium tuberculosis, which have already reached clinical trials. A product obtained in low yield upon treatment of 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-4H-benzothiazin-4-one with 3-chloroperbenzoic acid, in analogy to a literature report describing the formation of sulfoxide and sulfone derived from BTZ043 [Tiwari et al. (2015). ACS Med. Chem. Lett. 6, 128-133], is a ring-contracted benzisothiazolinone (BIT) 1-oxide, namely, 7-nitro-2-(piperidine-1-carbonyl)-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-one 1-oxide, CHFNOS, as revealed by X-ray crystallography. Single-crystal X-ray analysis of the oxidation product originally assigned as BTZ043 sulfone provides clear evidence that the structure of the purported BTZ043 sulfone is likewise the corresponding BIT 1-oxide, namely, 2-[(S)-2-methyl-1,4-dioxa-8-azaspiro[4.5]decane-8-carbonyl]-7-nitro-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-one 1-oxide, CHFNOS. A possible mechanism for the ring contraction affording the BIT 1-oxides instead of the anticipated constitutionally isomeric BTZ sulfones and antimycobacterial activities thereof are discussed.

Citing Articles

Crystal structure and anti-mycobacterial evaluation of 2-(cyclo-hexyl-meth-yl)-7-nitro-5-(tri-fluoro-meth-yl)benzo[]iso-thia-zol-3(2)-one.

Richter A, Goddard R, Imming P, Seidel R Acta Crystallogr E Crystallogr Commun. 2024; 79(Pt 12):1194-1198.

PMID: 38313133 PMC: 10833412. DOI: 10.1107/S2056989023010137.


BTZ-Derived Benzisothiazolinones with In Vitro Activity against .

Richter A, Seidel R, Goddard R, Eckhardt T, Lehmann C, Dorner J ACS Med Chem Lett. 2022; 13(8):1302-1310.

PMID: 35982823 PMC: 9380706. DOI: 10.1021/acsmedchemlett.2c00215.


New Insight into Dearomatization and Decarbonylation of Antitubercular 4H-Benzo[e][1,3]thiazinones: Stable 5H- and 7H-Benzo[e][1,3]thiazines.

Richter A, Seidel R, Graf J, Goddard R, Lehmann C, Schlegel T ChemMedChem. 2022; 17(6):e202200021.

PMID: 35170242 PMC: 9306624. DOI: 10.1002/cmdc.202200021.


Efficient Synthesis of Benzothiazinone Analogues with Activity against Intracellular Mycobacterium tuberculosis.

Richter A, Narula G, Rudolph I, Seidel R, Wagner C, Av-Gay Y ChemMedChem. 2021; 17(6):e202100733.

PMID: 34939744 PMC: 9303563. DOI: 10.1002/cmdc.202100733.

References
1.
Lupien A, Vocat A, Foo C, Blattes E, Gillon J, Makarov V . Optimized Background Regimen for Treatment of Active Tuberculosis with the Next-Generation Benzothiazinone Macozinone (PBTZ169). Antimicrob Agents Chemother. 2018; 62(11). PMC: 6201121. DOI: 10.1128/AAC.00840-18. View

2.
Baker R, Colavita P, Murphy D, Platts J, Wallis J . Fluorine-fluorine interactions in the solid state: an experimental and theoretical study. J Phys Chem A. 2011; 116(5):1435-44. DOI: 10.1021/jp2099976. View

3.
Mikusova K, Makarov V, Neres J . DprE1--from the discovery to the promising tuberculosis drug target. Curr Pharm Des. 2013; 20(27):4379-403. DOI: 10.2174/138161282027140630122724. View

4.
Gopinath P, Yadav R, Shukla P, Srivastava K, Puri S, Muraleedharan K . Broad spectrum anti-infective properties of benzisothiazolones and the parallels in their anti-bacterial and anti-fungal effects. Bioorg Med Chem Lett. 2017; 27(5):1291-1295. DOI: 10.1016/j.bmcl.2017.01.027. View

5.
Parsons S, Flack H, Wagner T . Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2013; 69(Pt 3):249-59. PMC: 3661305. DOI: 10.1107/S2052519213010014. View