» Articles » PMID: 32886606

A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.

Citing Articles

MRI-Based Topology Deep Learning Model for Noninvasive Prediction of Microvascular Invasion and Assisting Prognostic Stratification in HCC.

Zheng T, Zhu Y, Jiang H, Yang C, Ye Y, Bashir M Liver Int. 2025; 45(3):e16205.

PMID: 39992060 PMC: 11849444. DOI: 10.1111/liv.16205.


Persistent Homology Combined with Machine Learning for Social Network Activity Analysis.

Zhang Z, Sun Y, Liu Y, Jiang L, Li Z Entropy (Basel). 2025; 27(1).

PMID: 39851639 PMC: 11764698. DOI: 10.3390/e27010019.


Topology-Aware Uncertainty for Image Segmentation.

Gupta S, Zhang Y, Hu X, Prasanna P, Chen C Adv Neural Inf Process Syst. 2024; 36:8186-8207.

PMID: 39484069 PMC: 11526043.


Contour-constrained branch U-Net for accurate left ventricular segmentation in echocardiography.

Qu M, Yang J, Li H, Qi Y, Yu Q Med Biol Eng Comput. 2024; 63(2):561-573.

PMID: 39417962 DOI: 10.1007/s11517-024-03201-0.


Three-dimensional numerical schemes for the segmentation of the psoas muscle in X-ray computed tomography images.

Paolucci G, Cama I, Campi C, Piana M BMC Med Imaging. 2024; 24(1):251.

PMID: 39300334 PMC: 11414197. DOI: 10.1186/s12880-024-01423-0.


References
1.
Pizer S, Fletcher P, Joshi S, Thall A, Chen J, Fridman Y . Deformable M-Reps for 3D Medical Image Segmentation. Int J Comput Vis. 2013; 55(2-3):85-106. PMC: 3697155. DOI: 10.1023/a:1026313132218. View

2.
Gao M, Chen C, Zhang S, Qian Z, Metaxas D, Axel L . Segmenting the papillary muscles and the trabeculae from high resolution cardiac CT through restoration of topological handles. Inf Process Med Imaging. 2014; 23:184-95. DOI: 10.1007/978-3-642-38868-2_16. View

3.
Vukicevic M, Mosadegh B, Min J, Little S . Cardiac 3D Printing and its Future Directions. JACC Cardiovasc Imaging. 2017; 10(2):171-184. PMC: 5664227. DOI: 10.1016/j.jcmg.2016.12.001. View

4.
Bendich P, Marron J, Miller E, Pieloch A, Skwerer S . Persistent Homology Analysis of Brain Artery Trees. Ann Appl Stat. 2016; 10(1):198-218. PMC: 5026243. DOI: 10.1214/15-AOAS886. View

5.
Donato I, Gori M, Pettini M, Petri G, de Nigris S, Franzosi R . Persistent homology analysis of phase transitions. Phys Rev E. 2016; 93(5):052138. DOI: 10.1103/PhysRevE.93.052138. View