» Articles » PMID: 32886099

Identifying Signaling Genes in Spatial Single-cell Expression Data

Overview
Journal Bioinformatics
Specialty Biology
Date 2020 Sep 5
PMID 32886099
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Recent technological advances enable the profiling of spatial single-cell expression data. Such data present a unique opportunity to study cell-cell interactions and the signaling genes that mediate them. However, most current methods for the analysis of these data focus on unsupervised descriptive modeling, making it hard to identify key signaling genes and quantitatively assess their impact.

Results: We developed a Mixture of Experts for Spatial Signaling genes Identification (MESSI) method to identify active signaling genes within and between cells. The mixture of experts strategy enables MESSI to subdivide cells into subtypes. MESSI relies on multi-task learning using information from neighboring cells to improve the prediction of response genes within a cell. Applying the methods to three spatial single-cell expression datasets, we show that MESSI accurately predicts the levels of response genes, improving upon prior methods and provides useful biological insights about key signaling genes and subtypes of excitatory neuron cells.

Availability And Implementation: MESSI is available at: https://github.com/doraadong/MESSI.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

Intracellular spatial transcriptomic analysis toolkit (InSTAnT).

Kumar A, Schrader A, Aggarwal B, Boroojeny A, Asadian M, Lee J Nat Commun. 2024; 15(1):7794.

PMID: 39242579 PMC: 11379969. DOI: 10.1038/s41467-024-49457-w.


Spatial Cellular Networks from omics data with SpaCeNet.

Schrod S, Luck N, Lohmayer R, Solbrig S, Volkl D, Wipfler T Genome Res. 2024; 34(9):1371-1383.

PMID: 39231609 PMC: 11529864. DOI: 10.1101/gr.279125.124.


Cell-cell communication: new insights and clinical implications.

Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J Signal Transduct Target Ther. 2024; 9(1):196.

PMID: 39107318 PMC: 11382761. DOI: 10.1038/s41392-024-01888-z.


The diversification of methods for studying cell-cell interactions and communication.

Armingol E, Baghdassarian H, Lewis N Nat Rev Genet. 2024; 25(6):381-400.

PMID: 38238518 PMC: 11139546. DOI: 10.1038/s41576-023-00685-8.


A guidebook of spatial transcriptomic technologies, data resources and analysis approaches.

Yue L, Liu F, Hu J, Yang P, Wang Y, Dong J Comput Struct Biotechnol J. 2024; 21:940-955.

PMID: 38213887 PMC: 10781722. DOI: 10.1016/j.csbj.2023.01.016.


References
1.
Mattson B, Morrell J . Preference for cocaine- versus pup-associated cues differentially activates neurons expressing either Fos or cocaine- and amphetamine-regulated transcript in lactating, maternal rodents. Neuroscience. 2005; 135(2):315-28. PMC: 1751484. DOI: 10.1016/j.neuroscience.2005.06.045. View

2.
Ramilowski J, Goldberg T, Harshbarger J, Kloppmann E, Kloppman E, Lizio M . A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015; 6:7866. PMC: 4525178. DOI: 10.1038/ncomms8866. View

3.
Chen Y, Li Y, Narayan R, Subramanian A, Xie X . Gene expression inference with deep learning. Bioinformatics. 2016; 32(12):1832-9. PMC: 4908320. DOI: 10.1093/bioinformatics/btw074. View

4.
Tanay A, Regev A . Scaling single-cell genomics from phenomenology to mechanism. Nature. 2017; 541(7637):331-338. PMC: 5438464. DOI: 10.1038/nature21350. View

5.
Choe H, Kim H, Park S, Lee H, Park J, Seong J . Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation. Proc Natl Acad Sci U S A. 2013; 110(14):5677-82. PMC: 3619287. DOI: 10.1073/pnas.1213594110. View