Pointer Defect Detection Based on Transfer Learning and Improved Cascade-RCNN
Overview
Affiliations
To meet the practical needs of detecting various defects on the pointer surface and solve the difficulty of detecting some defects on the pointer surface, this paper proposes a transfer learning and improved Cascade-RCNN deep neural network (TICNET) algorithm for detecting pointer defects. Firstly, the convolutional layers of ResNet-50 are reconstructed by deformable convolution, which enhances the learning of pointer surface defects by feature extraction network. Furthermore, the problems of missing detection caused by internal differences and weak features are effectively solved. Secondly, the idea of online hard example mining (OHEM) is used to improve the Cascade-RCNN detection network, which achieve accurate classification of defects. Finally, based on the fact that common pointer defect dataset and pointer defect dataset established in this paper have the same low-level visual characteristics. The network is pre-trained on the common defect dataset, and weights are transferred to the defect dataset established in this paper, which reduces the training difficulty caused by too few data. The experimental results show that the proposed method achieves a 0.933 detection rate and a 0.873 mean average precision when the threshold of intersection over union is 0.5, and it realizes high precision detection of pointer surface defects.
Adaptive visual detection of industrial product defects.
Zhang H, Wang D, Chen Z, Pan R PeerJ Comput Sci. 2023; 9:e1264.
PMID: 37346517 PMC: 10280690. DOI: 10.7717/peerj-cs.1264.
An Efficient and Intelligent Detection Method for Fabric Defects based on Improved YOLOv5.
Lin G, Liu K, Xia X, Yan R Sensors (Basel). 2023; 23(1).
PMID: 36616696 PMC: 9824629. DOI: 10.3390/s23010097.
A Lightweight Deep Network for Defect Detection of Insert Molding Based on X-ray Imaging.
Wang B, Huang F Sensors (Basel). 2021; 21(16).
PMID: 34451057 PMC: 8402496. DOI: 10.3390/s21165612.
A New Steel Defect Detection Algorithm Based on Deep Learning.
Zhao W, Chen F, Huang H, Li D, Cheng W Comput Intell Neurosci. 2021; 2021:5592878.
PMID: 33824656 PMC: 8007367. DOI: 10.1155/2021/5592878.