» Articles » PMID: 32879323

Taking Electrodecarboxylative Etherification Beyond Hofer-Moest Using a Radical C-O Coupling Strategy

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Sep 4
PMID 32879323
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Established electrodecarboxylative etherification protocols are based on Hofer-Moest-type reaction pathways. An oxidative decarboxylation gives rise to radicals, which are further oxidised to carbocations. This is possible only for benzylic or otherwise stabilised substrates. Here, we report the electrodecarboxylative radical-radical coupling of lithium alkylcarboxylates with 1-hydroxybenzotriazole at platinum electrodes in methanol/pyridine to afford alkyl benzotriazole ethers. The substrate scope of this electrochemical radical coupling extends to primary and secondary alkylcarboxylates. The benzotriazole products easily undergo reductive cleavage to the alcohols. They can also serve as synthetic hubs to access a wide variety of functional groups. This reaction prototype demonstrates that electrodecarboxylative C-O bond formation can be taken beyond the intrinsic substrate limitations of Hofer-Moest mechanisms.

Citing Articles

Electrifying Friedel-Crafts Intramolecular Alkylation toward 1,1-Disubstituted Tetrahydronaphthalenes.

Lunghi E, Ronco P, Della Negra F, Trucchi B, Verzini M, Merli D J Org Chem. 2023; 88(24):16783-16789.

PMID: 38032548 PMC: 10729024. DOI: 10.1021/acs.joc.3c01281.


Wireless Electrochemical Reactor for Accelerated Exploratory Study of Electroorganic Synthesis.

Chen J, Mo Y ACS Cent Sci. 2023; 9(9):1820-1826.

PMID: 37780362 PMC: 10540286. DOI: 10.1021/acscentsci.3c00856.


Mechanistic Aspects of the Electrochemical Oxidation of Aliphatic Amines and Aniline Derivatives.

Mruthunjaya A, Torriero A Molecules. 2023; 28(2).

PMID: 36677530 PMC: 9864799. DOI: 10.3390/molecules28020471.


C-H Fluoromethoxylation of Arenes by Photoredox Catalysis.

Bertoli G, Martinez A, Goebel J, Belmonte D, Sivendran N, Goossen L Angew Chem Int Ed Engl. 2022; 62(5):e202215920.

PMID: 36385731 PMC: 10107189. DOI: 10.1002/anie.202215920.


Transition-metal-free decarboxylative thiolation of stable aliphatic carboxylates.

Xing W, Liu D, Fu M RSC Adv. 2022; 11(8):4593-4597.

PMID: 35424417 PMC: 8694499. DOI: 10.1039/d1ra00063b.


References
1.
Nakata T . Total synthesis of marine polycyclic ethers. Chem Rev. 2005; 105(12):4314-47. DOI: 10.1021/cr040627q. View

2.
Mirkhani V, Tangestaninejad S, Moghadam M, Moghbel M . Rapid and efficient oxidative decarboxylation of carboxylic acids with sodium periodate catalyzed by manganese (III) Schiff base complexes. Bioorg Med Chem. 2004; 12(5):903-6. DOI: 10.1016/j.bmc.2003.12.025. View

3.
Kim D, Reddy S, Singh O, Lee J, Kong S, Han H . Ir(I)-catalyzed enantioselective decarboxylative allylic etherification: a general method for the asymmetric synthesis of aryl allyl ethers. Org Lett. 2013; 15(3):512-5. DOI: 10.1021/ol3033237. View

4.
Bhadra S, Dzik W, Goossen L . Decarboxylative etherification of aromatic carboxylic acids. J Am Chem Soc. 2012; 134(24):9938-41. DOI: 10.1021/ja304539j. View

5.
Song H, Ding W, Zhou Q, Liu J, Lu L, Xiao W . Photocatalytic Decarboxylative Hydroxylation of Carboxylic Acids Driven by Visible Light and Using Molecular Oxygen. J Org Chem. 2016; 81(16):7250-5. DOI: 10.1021/acs.joc.6b01360. View