» Articles » PMID: 32859910

Anharmonic Quantum Nuclear Densities from Full Dimensional Vibrational Eigenfunctions with Application to Protonated Glycine

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Aug 30
PMID 32859910
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The interpretation of molecular vibrational spectroscopic signals in terms of atomic motion is essential to understand molecular mechanisms and for chemical characterization. The signals are usually assigned after harmonic normal mode analysis, even if molecular vibrations are known to be anharmonic. Here we obtain the quantum anharmonic vibrational eigenfunctions of the 11-atom protonated glycine molecule and we calculate the density distribution of its nuclei and its geometry parameters, for both the ground and the O-H stretch excited states, using our semiclassical method based on ab initio molecular dynamics trajectories. Our quantum mechanical results describe a molecule elongated and more flexible with respect to what previously thought. More importantly, our method is able to assign each spectral peak in vibrational spectroscopy by showing quantitatively how normal modes involving different functional groups cooperate to originate that spectroscopic signal. The method will possibly allow for a better rationalization of experimental spectroscopy.

Citing Articles

Accurate fundamental invariant-neural network representation of potential energy surfaces.

Fu B, Zhang D Natl Sci Rev. 2024; 10(12):nwad321.

PMID: 38274241 PMC: 10808953. DOI: 10.1093/nsr/nwad321.


Coupled Cluster Semiclassical Estimates of Experimental Reaction Rates: The Interconversion of Glycine Conformer VIp to Ip.

Mandelli G, Corneo L, Aieta C J Phys Chem Lett. 2023; 14(44):9996-10002.

PMID: 37906174 PMC: 10641884. DOI: 10.1021/acs.jpclett.3c02560.


Anharmonic Assignment of the Water Octamer Spectrum in the OH Stretch Region.

Barbiero D, Bertaina G, Ceotto M, Conte R J Phys Chem A. 2023; 127(30):6213-6221.

PMID: 37477983 PMC: 10405218. DOI: 10.1021/acs.jpca.3c02902.


Elucidating NO Surface Chemistry at the Anatase (101) Surface in TiO Nanoparticles.

Mino L, Cazzaniga M, Moriggi F, Ceotto M J Phys Chem C Nanomater Interfaces. 2023; 127(1):437-449.

PMID: 36660096 PMC: 9841571. DOI: 10.1021/acs.jpcc.2c07489.


Semiclassical and VSCF/VCI Calculations of the Vibrational Energies of - and -Ethanol Using a CCSD(T) Potential Energy Surface.

Conte R, Nandi A, Qu C, Yu Q, Houston P, Bowman J J Phys Chem A. 2022; 126(42):7709-7718.

PMID: 36240438 PMC: 9620145. DOI: 10.1021/acs.jpca.2c06322.


References
1.
Mancini J, Bowman J . Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction. J Chem Phys. 2013; 138(12):121102. DOI: 10.1063/1.4799231. View

2.
Martinez M, Gaigeot M, Borgis D, Vuilleumier R . Extracting effective normal modes from equilibrium dynamics at finite temperature. J Chem Phys. 2006; 125(14):144106. DOI: 10.1063/1.2346678. View

3.
Humphrey W, Dalke A, Schulten K . VMD: visual molecular dynamics. J Mol Graph. 1996; 14(1):33-8, 27-8. DOI: 10.1016/0263-7855(96)00018-5. View

4.
Yu H, Ndengue S, Li J, Dawes R, Guo H . Vibrational energy levels of the simplest Criegee intermediate (CH2OO) from full-dimensional Lanczos, MCTDH, and MULTIMODE calculations. J Chem Phys. 2015; 143(8):084311. DOI: 10.1063/1.4929707. View

5.
Tao Y, Tian C, Verma N, Zou W, Wang C, Cremer D . Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis. J Chem Theory Comput. 2018; 14(5):2558-2569. DOI: 10.1021/acs.jctc.7b01171. View