» Articles » PMID: 32855581

Human-robot Mutual Adaptation in Collaborative Tasks: Models and Experiments

Overview
Journal Int J Rob Res
Publisher MIT Press
Date 2020 Aug 29
PMID 32855581
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Adaptation is critical for effective team collaboration. This paper introduces a computational formalism for mutual adaptation between a robot and a human in collaborative tasks. We propose the Bounded-Memory Adaptation Model, which is a probabilistic finite-state controller that captures human adaptive behaviors under a bounded-memory assumption. We integrate the Bounded-Memory Adaptation Model into a probabilistic decision process, enabling the robot to guide adaptable participants towards a better way of completing the task. Human subject experiments suggest that the proposed formalism improves the effectiveness of human-robot teams in collaborative tasks, when compared with one-way adaptations of the robot to the human, while maintaining the human's trust in the robot.

Citing Articles

An analysis of the role of different levels of exchange of explicit information in human-robot cooperation.

San Martin A, Kildal J, Lazkano E Front Robot AI. 2025; 12:1511619.

PMID: 39995755 PMC: 11848069. DOI: 10.3389/frobt.2025.1511619.


Sensemaking, adaptation and agency in human-exoskeleton synchrony.

Wilkenfeld J, Kim S, Upasani S, Kirkwood G, Dunbar N, Srinivasan D Front Robot AI. 2023; 10:1207052.

PMID: 37901167 PMC: 10602643. DOI: 10.3389/frobt.2023.1207052.


Human Factors Considerations for Quantifiable Human States in Physical Human-Robot Interaction: A Literature Review.

Abdulazeem N, Hu Y Sensors (Basel). 2023; 23(17).

PMID: 37687837 PMC: 10490212. DOI: 10.3390/s23177381.


Stable Heteroclinic Channel Networks for Physical Human-Humanoid Robot Collaboration.

Brecelj T, Petric T Sensors (Basel). 2023; 23(3).

PMID: 36772433 PMC: 9921709. DOI: 10.3390/s23031396.


Human Factors Considerations and Metrics in Shared Space Human-Robot Collaboration: A Systematic Review.

Hopko S, Wang J, Mehta R Front Robot AI. 2022; 9:799522.

PMID: 35187093 PMC: 8850717. DOI: 10.3389/frobt.2022.799522.


References
1.
Nikolaidis S, Kuznetsov A, Hsu D, Srinivasa S . Formalizing Human-Robot Mutual Adaptation: A Bounded Memory Model. Proc ACM SIGCHI. 2019; 2016:75-82. PMC: 6329591. DOI: 10.1109/HRI.2016.7451736. View

2.
Mathieu J, Heffner T, Goodwin G, Salas E . The influence of shared mental models on team process and performance. J Appl Psychol. 2000; 85(2):273-83. DOI: 10.1037/0021-9010.85.2.273. View

3.
Hancock P, Billings D, Schaefer K, Chen J, de Visser E, Parasuraman R . A meta-analysis of factors affecting trust in human-robot interaction. Hum Factors. 2011; 53(5):517-27. DOI: 10.1177/0018720811417254. View

4.
Lesaffre E . Superiority, equivalence, and non-inferiority trials. Bull NYU Hosp Jt Dis. 2008; 66(2):150-4. View

5.
Lasota P, Shah J . Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration. Hum Factors. 2015; 57(1):21-33. PMC: 4359211. DOI: 10.1177/0018720814565188. View