» Articles » PMID: 32855431

A Spatial Regime Shift from Predator to Prey Dominance in a Large Coastal Ecosystem

Overview
Journal Commun Biol
Specialty Biology
Date 2020 Aug 29
PMID 32855431
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Regime shifts in ecosystem structure and processes are typically studied from a temporal perspective. Yet, theory predicts that in large ecosystems with environmental gradients, shifts should start locally and gradually spread through space. Here we empirically document a spatially propagating shift in the trophic structure of a large aquatic ecosystem, from dominance of large predatory fish (perch, pike) to the small prey fish, the three-spined stickleback. Fish surveys in 486 shallow bays along the 1200 km western Baltic Sea coast during 1979-2017 show that the shift started in wave-exposed archipelago areas near the open sea, but gradually spread towards the wave-sheltered mainland coast. Ecosystem surveys in 32 bays in 2014 show that stickleback predation on juvenile predators (predator-prey reversal) generates a feedback mechanism that appears to reinforce the shift. In summary, managers must account for spatial heterogeneity and dispersal to better predict, detect and confront regime shifts within large ecosystems.

Citing Articles

Evolution of fast-growing piscivorous herring in the young Baltic Sea.

Goodall J, Pettersson M, Bergstrom U, Cocco A, Delling B, Heimbrand Y Nat Commun. 2024; 15(1):10707.

PMID: 39715744 PMC: 11666761. DOI: 10.1038/s41467-024-55216-8.


The heat is on: sensitivity of goldsinny wrasse to global climate change.

Perry D, Tamarit E, Morgenroth D, Grans A, Sturve J, Gullstrom M Conserv Physiol. 2024; 12(1):coae068.

PMID: 39381801 PMC: 11459238. DOI: 10.1093/conphys/coae068.


Predation and spatial connectivity interact to shape ecosystem resilience to an ongoing regime shift.

Olin A, Bergstrom U, Bodin O, Sundblad G, Eriksson B, Erlandsson M Nat Commun. 2024; 15(1):1304.

PMID: 38347008 PMC: 10861472. DOI: 10.1038/s41467-024-45713-1.


Integrating biogeography and behavioral ecology to rapidly address biodiversity loss.

Marske K, Lanier H, Siler C, Rowe A, Stein L Proc Natl Acad Sci U S A. 2023; 120(15):e2110866120.

PMID: 37018201 PMC: 10104574. DOI: 10.1073/pnas.2110866120.


A Behavioral Syndrome Linking Boldness and Flexibility Facilitates Invasion Success in Sticklebacks.

Bensky M, Bell A Am Nat. 2022; 200(6):846-856.

PMID: 36409977 PMC: 9756172. DOI: 10.1086/721765.


References
1.
deYoung B, Barange M, Beaugrand G, Harris R, Perry R, Scheffer M . Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol Evol. 2008; 23(7):402-9. DOI: 10.1016/j.tree.2008.03.008. View

2.
Scheffer M, Carpenter S, Foley J, Folke C, Walker B . Catastrophic shifts in ecosystems. Nature. 2001; 413(6856):591-6. DOI: 10.1038/35098000. View

3.
Andersen T, Carstensen J, Hernandez-Garcia E, Duarte C . Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol. 2008; 24(1):49-57. DOI: 10.1016/j.tree.2008.07.014. View

4.
Scheffer M, Carpenter S, Lenton T, Bascompte J, Brock W, Dakos V . Anticipating critical transitions. Science. 2012; 338(6105):344-8. DOI: 10.1126/science.1225244. View

5.
Rocha J, Peterson G, Bodin O, Levin S . Cascading regime shifts within and across scales. Science. 2018; 362(6421):1379-1383. DOI: 10.1126/science.aat7850. View