» Articles » PMID: 32850652

Sulfate, Bisulfate, and Hydrogen Co-adsorption on Pt(111) and Au(111) in an Electrochemical Environment

Overview
Journal Front Chem
Specialty Chemistry
Date 2020 Aug 28
PMID 32850652
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The co-adsorption of sulfate, bisulfate and hydrogen on Pt(111) and Au(111) electrodes was studied based on periodic density functional calculations with the aqueous electrolyte represented by both explicit and implicit solvent models. The influence of the electrochemical control parameters such as the electrode potential and pH was taken into account in a grand-canonical approach. Thus, phase diagrams of the stable coadsorption phases as a function of the electrochemical potential and Pourbaix diagrams have been derived which well reproduce experimental findings. We demonstrate that it is necessary to include explicit water molecules in order to determine the stable adsorbate phases as the (bi)sulfate adsorbates rows become significantly stabilized by bridging water molecules.

Citing Articles

Quantification of Hydride Coverage on Cu(111) by Electrochemical Mass Spectrometry.

Raciti D, Moffat T J Phys Chem C Nanomater Interfaces. 2024; 126(44).

PMID: 38711439 PMC: 11070959. DOI: 10.1021/acs.jpcc.2c06207.


Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis.

Kamat G, Zamora Zeledon J, Gunasooriya G, Dull S, Perryman J, Norskov J Commun Chem. 2023; 5(1):20.

PMID: 36697647 PMC: 9814610. DOI: 10.1038/s42004-022-00635-1.


Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments.

Chatenet M, Pollet B, Dekel D, Dionigi F, Deseure J, Millet P Chem Soc Rev. 2022; 51(11):4583-4762.

PMID: 35575644 PMC: 9332215. DOI: 10.1039/d0cs01079k.


Identification of Electrochemically Adsorbed Species via Electrochemical Microcalorimetry: Sulfate Adsorption on Au(111).

Schonig M, Frittmann S, Schuster R Chemphyschem. 2022; 23(17):e202200227.

PMID: 35510390 PMC: 9542382. DOI: 10.1002/cphc.202200227.

References
1.
Heenen H, Gauthier J, Kristoffersen H, Ludwig T, Chan K . Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches. J Chem Phys. 2020; 152(14):144703. DOI: 10.1063/1.5144912. View

2.
Ruiz-Barragan S, Munoz-Santiburcio D, Marx D . Nanoconfined Water within Graphene Slit Pores Adopts Distinct Confinement-Dependent Regimes. J Phys Chem Lett. 2018; 10(3):329-334. DOI: 10.1021/acs.jpclett.8b03530. View

3.
Braunschweig B, Mukherjee P, Dlott D, Wieckowski A . Real-time investigations of Pt(111) surface transformations in sulfuric acid solutions. J Am Chem Soc. 2010; 132(40):14036-8. DOI: 10.1021/ja106618z. View

4.
Sakong S, Naderian M, Mathew K, Hennig R, Gross A . Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J Chem Phys. 2015; 142(23):234107. DOI: 10.1063/1.4922615. View

5.
Garcia-Araez N, Climent V, Rodriguez P, Feliu J . Elucidation of the chemical nature of adsorbed species for Pt(111) in H2SO4 solutions by thermodynamic analysis. Langmuir. 2010; 26(14):12408-17. DOI: 10.1021/la101112b. View