» Articles » PMID: 32824193

Oncology Therapeutics Targeting the Metabolism of Amino Acids

Overview
Journal Cells
Publisher MDPI
Date 2020 Aug 23
PMID 32824193
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Amino acid metabolism promotes cancer cell proliferation and survival by supporting building block synthesis, producing reducing agents to mitigate oxidative stress, and generating immunosuppressive metabolites for immune evasion. Malignant cells rewire amino acid metabolism to maximize their access to nutrients. Amino acid transporter expression is upregulated to acquire amino acids from the extracellular environment. Under nutrient depleted conditions, macropinocytosis can be activated where proteins from the extracellular environment are engulfed and degraded into the constituent amino acids. The demand for non-essential amino acids (NEAAs) can be met through de novo synthesis pathways. Cancer cells can alter various signaling pathways to boost amino acid usage for the generation of nucleotides, reactive oxygen species (ROS) scavenging molecules, and oncometabolites. The importance of amino acid metabolism in cancer proliferation makes it a potential target for therapeutic intervention, including via small molecules and antibodies. In this review, we will delineate the targets related to amino acid metabolism and promising therapeutic approaches.

Citing Articles

Detection and Validation of Organic Metabolites in Urine for Clear Cell Renal Cell Carcinoma Diagnosis.

Holbrook K, Quaye G, Noriega Landa E, Su X, Gao Q, Williams H Metabolites. 2024; 14(10).

PMID: 39452927 PMC: 11509871. DOI: 10.3390/metabo14100546.


Bioinformatics-based drug repositioning and prediction of the main active ingredients and potential mechanisms of action for the efficacy of Dan-Lou tablet.

Zhang J, Lin Z, Zhang Y, Gu H, Li W Sci Rep. 2024; 14(1):23297.

PMID: 39375410 PMC: 11458610. DOI: 10.1038/s41598-024-74243-5.


[Study on the difference and clinical value of serum amino acids in patients with laryngeal squamous cell carcinoma].

Sun Y, Gan M, Wu Y, Gao W, Lu Y Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2024; 38(8):715-721.

PMID: 39118510 PMC: 11612755. DOI: 10.13201/j.issn.2096-7993.2024.08.008.


Understanding the kynurenine pathway: A narrative review on its impact across chronic pain conditions.

Hazrati E, Eftekhar S, Mosaed R, Dini S, Namazi M Mol Pain. 2024; 20:17448069241275097.

PMID: 39093627 PMC: 11331475. DOI: 10.1177/17448069241275097.


Immunonutrition, Metabolism, and Programmed Cell Death in Lung Cancer: Translating Bench to Bedside.

Fedele P, Santoro A, Pini F, Pellegrino M, Polito G, De Luca M Biology (Basel). 2024; 13(6).

PMID: 38927289 PMC: 11201027. DOI: 10.3390/biology13060409.


References
1.
Oakley A . Glutathione transferases: a structural perspective. Drug Metab Rev. 2011; 43(2):138-51. DOI: 10.3109/03602532.2011.558093. View

2.
Bezerra D, Moura D, Rosa R, de Vasconcellos M, Romano E Silva A, de Moraes M . Evaluation of the genotoxicity of piplartine, an alkamide of Piper tuberculatum, in yeast and mammalian V79 cells. Mutat Res. 2008; 652(2):164-74. DOI: 10.1016/j.mrgentox.2008.02.001. View

3.
Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Murakami T, Yamamoto N . Effective Metabolic Targeting of Human Osteosarcoma Cells and in Orthotopic Nude-mouse Models with Recombinant Methioninase. Anticancer Res. 2017; 37(9):4807-4812. DOI: 10.21873/anticanres.11887. View

4.
Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield V . hDOT1L links histone methylation to leukemogenesis. Cell. 2005; 121(2):167-78. DOI: 10.1016/j.cell.2005.02.020. View

5.
Witkiewicz A, Williams T, Cozzitorto J, Durkan B, Showalter S, Yeo C . Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg. 2008; 206(5):849-54. DOI: 10.1016/j.jamcollsurg.2007.12.014. View