» Articles » PMID: 32781410

HASLR: Fast Hybrid Assembly of Long Reads

Overview
Journal iScience
Publisher Cell Press
Date 2020 Aug 12
PMID 32781410
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Third-generation sequencing technologies from companies such as Oxford Nanopore and Pacific Biosciences have paved the way for building more contiguous and potentially gap-free assemblies. The larger effective length of their reads has provided a means to overcome the challenges of short to mid-range repeats. Currently, accurate long read assemblers are computationally expensive, whereas faster methods are not as accurate. Moreover, despite recent advances in third-generation sequencing, researchers still tend to generate accurate short reads for many of the analysis tasks. Here, we present HASLR, a hybrid assembler that uses error-prone long reads together with high-quality short reads to efficiently generate accurate genome assemblies. Our experiments show that HASLR is not only the fastest assembler but also the one with the lowest number of misassemblies on most of the samples, while being on par with other assemblers in terms of contiguity and accuracy.

Citing Articles

De novo genome hybrid assembly and annotation of the endangered and euryhaline fish Aphanius iberus (Valenciennes, 1846) with identification of genes potentially involved in salinity adaptation.

Lopez-Solano A, Doadrio I, Nester T, Perea S BMC Genomics. 2025; 26(1):136.

PMID: 39939939 PMC: 11817801. DOI: 10.1186/s12864-025-11327-0.


Assessing parasite genomes assembled using only Oxford Nanopore Technologies MinION data.

Herzog K, Wu R, Hawdon J, Nejsum P, Fauver J iScience. 2024; 27(9):110614.

PMID: 39211578 PMC: 11357801. DOI: 10.1016/j.isci.2024.110614.


Chromosome-Level Reference Genome of the Ponza Grayling (Hipparchia sbordonii), an Italian Endemic and Endangered Butterfly.

Fava S, Sollitto M, Racaku M, Iannucci A, Benazzo A, Ancona L Genome Biol Evol. 2024; 16(7).

PMID: 39023104 PMC: 11255612. DOI: 10.1093/gbe/evae136.


Benchmarking short-, long- and hybrid-read assemblers for metagenome sequencing of complex microbial communities.

Goussarov G, Mysara M, Cleenwerck I, Claesen J, Leys N, Vandamme P Microbiology (Reading). 2024; 170(6).

PMID: 38916949 PMC: 11261854. DOI: 10.1099/mic.0.001469.


Crossroads of assembling a moss genome: navigating contaminants and horizontal gene transfer in the moss Physcomitrellopsis africana.

Vuruputoor V, Starovoitov A, Cai Y, Liu Y, Rahmatpour N, Hedderson T G3 (Bethesda). 2024; 14(7).

PMID: 38781445 PMC: 11228847. DOI: 10.1093/g3journal/jkae104.


References
1.
Antipov D, Korobeynikov A, McLean J, Pevzner P . hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics. 2015; 32(7):1009-15. PMC: 4907386. DOI: 10.1093/bioinformatics/btv688. View

2.
Ono Y, Asai K, Hamada M . PBSIM: PacBio reads simulator--toward accurate genome assembly. Bioinformatics. 2012; 29(1):119-21. DOI: 10.1093/bioinformatics/bts649. View

3.
Miller J, Delcher A, Koren S, Venter E, Walenz B, Brownley A . Aggressive assembly of pyrosequencing reads with mates. Bioinformatics. 2008; 24(24):2818-24. PMC: 2639302. DOI: 10.1093/bioinformatics/btn548. View

4.
Salmela L, Rivals E . LoRDEC: accurate and efficient long read error correction. Bioinformatics. 2014; 30(24):3506-14. PMC: 4253826. DOI: 10.1093/bioinformatics/btu538. View

5.
Zerbino D, Birney E . Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008; 18(5):821-9. PMC: 2336801. DOI: 10.1101/gr.074492.107. View