» Articles » PMID: 32781027

Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems

Overview
Date 2020 Aug 12
PMID 32781027
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Cells in assemblages differentiate and perform distinct roles. Though many pathways of differentiation are understood at the molecular level in multicellular eukaryotes, the elucidation of similar processes in bacterial assemblages is recent and ongoing. Here, we discuss examples of bacterial differentiation, focusing on cases in which distinct metabolisms coexist and those that exhibit cross-feeding, with one subpopulation producing substrates that are metabolized by a second subpopulation. We describe several studies of single-species systems, then segue to studies of multispecies metabolic heterogeneity and cross-feeding in the clinical setting. Many of the studies described exemplify the application of new techniques and modeling approaches that provide insights into metabolic interactions relevant for bacterial growth outside the laboratory.

Citing Articles

Disentangling the feedback loops driving spatial patterning in microbial communities.

Henderson A, Del Panta A, Schubert O, Mitri S, van Vliet S NPJ Biofilms Microbiomes. 2025; 11(1):32.

PMID: 39979272 PMC: 11842706. DOI: 10.1038/s41522-025-00666-1.


Microbial functional guilds respond cohesively to rapidly fluctuating environments.

Crocker K, Skwara A, Kannan R, Murugan A, Kuehn S bioRxiv. 2025; .

PMID: 39974892 PMC: 11838272. DOI: 10.1101/2025.01.30.635766.


Biophysical metabolic modeling of complex bacterial colony morphology.

Dukovski I, Golden L, Zhang J, Osborne M, Segre D, Korolev K bioRxiv. 2024; .

PMID: 39502364 PMC: 11537321. DOI: 10.1101/2024.03.13.584915.


Bacterial phenotypic heterogeneity through the lens of single-cell RNA sequencing.

Walls A, Rosenthal A Transcription. 2024; 15(1-2):48-62.

PMID: 38532542 PMC: 11093040. DOI: 10.1080/21541264.2024.2334110.


Single-Molecule Fluorescent In Situ Hybridization (smFISH) for RNA Detection in Bacteria.

Mattioli C, Avraham R Methods Mol Biol. 2024; 2784:3-23.

PMID: 38502475 DOI: 10.1007/978-1-0716-3766-1_1.


References
1.
Sakhtah H, Koyama L, Zhang Y, Morales D, Fields B, Price-Whelan A . The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A. 2016; 113(25):E3538-47. PMC: 4922186. DOI: 10.1073/pnas.1600424113. View

2.
Folsom J, Richards L, Pitts B, Roe F, Ehrlich G, Parker A . Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis. BMC Microbiol. 2010; 10:294. PMC: 2998477. DOI: 10.1186/1471-2180-10-294. View

3.
Wolfsberg E, Long C, Antoniewicz M . Metabolism in dense microbial colonies: C metabolic flux analysis of E. coli grown on agar identifies two distinct cell populations with acetate cross-feeding. Metab Eng. 2018; 49:242-247. DOI: 10.1016/j.ymben.2018.08.013. View

4.
Batsivari A, Haltalli M, Passaro D, Pospori C, Lo Celso C, Bonnet D . Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol. 2020; 22(1):7-17. DOI: 10.1038/s41556-019-0444-9. View

5.
Kamruzzaman M, Udden S, Cameron D, Calderwood S, Nair G, Mekalanos J . Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc Natl Acad Sci U S A. 2010; 107(4):1588-93. PMC: 2824409. DOI: 10.1073/pnas.0913404107. View