» Articles » PMID: 32780076

Switchable Supracolloidal 3D DNA Origami Nanotubes Mediated Through Fuel/antifuel Reactions

Overview
Journal Nanoscale
Specialty Biotechnology
Date 2020 Aug 12
PMID 32780076
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

3D DNA origami provide access to the de novo design of monodisperse and functional bio(organic) nanoparticles, and complement structural protein engineering and inorganic and organic nanoparticle synthesis approaches for the design of self-assembling colloidal systems. We show small 3D DNA origami nanoparticles, which polymerize and depolymerize reversibly to nanotubes of micrometer lengths by applying fuel/antifuel switches. 3D DNA nanocylinders are engineered as a basic building block with different numbers of overhang strands at the open sides to allow for their assembly via fuel strands that bridge both overhangs, resulting in the supracolloidal polymerization. The influence of the multivalent interaction patterns and the length of the bridging fuel strand on efficient polymerization and nanotube length distribution is investigated. The polymerized multivalent nanotubes disassemble through toehold-mediated rehybridization by adding equimolar amounts of antifuel strands. Finally, Förster resonance energy transfer yields in situ insights into the kinetics and reversibility of the nanotube polymerization and depolymerization.

Citing Articles

Construction of Reconfigurable and Polymorphic DNA Origami Assemblies with Coiled-Coil Patches and Patterns.

Teng T, Bernal-Chanchavac J, Stephanopoulos N, Castro C Adv Sci (Weinh). 2024; 11(20):e2307257.

PMID: 38459678 PMC: 11132032. DOI: 10.1002/advs.202307257.


Regulating DNA-Hybridization Using a Chemically Fueled Reaction Cycle.

Stasi M, Monferrer A, Babl L, Wunnava S, Dirscherl C, Braun D J Am Chem Soc. 2022; 144(48):21939-21947.

PMID: 36442850 PMC: 9732876. DOI: 10.1021/jacs.2c08463.


Growth Rate and Thermal Properties of DNA Origami Filaments.

Stenke L, Sacca B Nano Lett. 2022; 22(22):8818-8826.

PMID: 36327970 PMC: 9706658. DOI: 10.1021/acs.nanolett.2c02255.


Design, Mechanical Properties, and Dynamics of Synthetic DNA Filaments.

Stenke L, Sacca B Bioconjug Chem. 2022; 34(1):37-50.

PMID: 36174970 PMC: 9853505. DOI: 10.1021/acs.bioconjchem.2c00312.


Dynamics of DNA Origami Lattices.

Julin S, Keller A, Linko V Bioconjug Chem. 2022; 34(1):18-29.

PMID: 36109832 PMC: 9853508. DOI: 10.1021/acs.bioconjchem.2c00359.


References
1.
Groschel A, Walther A, Lobling T, Schacher F, Schmalz H, Muller A . Guided hierarchical co-assembly of soft patchy nanoparticles. Nature. 2013; 503(7475):247-51. DOI: 10.1038/nature12610. View

2.
Fava D, Winnik M, Kumacheva E . Photothermally-triggered self-assembly of gold nanorods. Chem Commun (Camb). 2009; (18):2571-3. DOI: 10.1039/b901412h. View

3.
Seelig G, Soloveichik D, Zhang D, Winfree E . Enzyme-free nucleic acid logic circuits. Science. 2006; 314(5805):1585-8. DOI: 10.1126/science.1132493. View

4.
Petersen P, Tikhomirov G, Qian L . Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat Commun. 2018; 9(1):5362. PMC: 6299139. DOI: 10.1038/s41467-018-07805-7. View

5.
Kashiwagi D, Sim S, Niwa T, Taguchi H, Aida T . Protein Nanotube Selectively Cleavable with DNA: Supramolecular Polymerization of "DNA-Appended Molecular Chaperones". J Am Chem Soc. 2017; 140(1):26-29. DOI: 10.1021/jacs.7b09892. View