» Articles » PMID: 32777070

Sustained Fetal Hematopoiesis Causes Juvenile Death from Leukemia: Evidence from a Dual-age-specific Mouse Model

Overview
Journal Blood Adv
Specialty Hematology
Date 2020 Aug 11
PMID 32777070
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

It is not clear whether disrupted age-specific hematopoiesis contributes to the complex manifestations in leukemia patients who carry identical mutations, particularly in pediatric and adult patients with similar clinical characteristics. By studying a dual-age-specific mouse model, we demonstrate that (1) loss of Pten during the fetal-to-adult hematopoiesis switch (hematopoiesis switch) causes sustained fetal hematopoiesis, resulting in death in juvenile leukemia; (2) myeloid-biased hematopoiesis in juvenile mice is associated with the sustained fetal properties of hematopoietic stem cells (HSCs); (3) the age specificity of juvenile myelomonocytic leukemia depends on the copy number of Pten and Nf1; (4) single-allelic Pten deletion during the hematopoiesis switch causes constitutive activation of MAPK in juvenile mice with Nf1 loss of heterozygosity (LOH); and (5) Nf1 LOH causes monocytosis in juvenile mice with Pten haploinsufficiency but does not cause lethality until adulthood. Our data suggest that 1 copy of Pten is sufficient to maintain an intact negative-feedback loop of the Akt pathway and HSC function in reconstitution, despite MAPK being constitutively activated in juvenile Pten+/ΔNf1LOH mice. However, 2 copies of Pten are required to maintain the integrity of the MAPK pathway in juvenile mice with Nf1 haploinsufficiency. Our data indicate that previous investigations of Pten function in wild-type mice may not reflect the impact of Pten loss in mice with Nf1 mutations or other genetic defects. We provide a proof of concept that disassociated age-specific hematopoiesis contributes to leukemogenesis and pediatric demise.

Citing Articles

Loss of Dnmt3a impairs hematopoietic homeostasis and myeloid cell skewing via the PI3Kinase pathway.

Palam L, Ramdas B, Pickerell K, Pasupuleti S, Kanumuri R, Cesarano A JCI Insight. 2023; 8(9).

PMID: 36976647 PMC: 10243813. DOI: 10.1172/jci.insight.163864.


Animal models of Diamond-Blackfan anemia: updates and challenges.

Liu Y, Shibuya A, Glader B, Wilkes M, Barna M, Sakamoto K Haematologica. 2022; 108(5):1222-1231.

PMID: 36384250 PMC: 10153544. DOI: 10.3324/haematol.2022.282042.


Advances in molecular characterization of myeloid proliferations associated with Down syndrome.

Li J, Kalev-Zylinska M Front Genet. 2022; 13:891214.

PMID: 36035173 PMC: 9399805. DOI: 10.3389/fgene.2022.891214.

References
1.
Yoshimoto M, Montecino-Rodriguez E, Ferkowicz M, Porayette P, Shelley W, Conway S . Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci U S A. 2011; 108(4):1468-73. PMC: 3029764. DOI: 10.1073/pnas.1015841108. View

2.
Manesia J, Franch M, Tabas-Madrid D, Nogales-Cadenas R, Vanwelden T, Van Den Bosch E . Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function. Stem Cells Dev. 2016; 26(8):573-584. PMC: 5961932. DOI: 10.1089/scd.2016.0294. View

3.
Alfonso A, Montalban-Bravo G, Takahashi K, Jabbour E, Kadia T, Ravandi F . Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents. Am J Hematol. 2017; 92(7):599-606. PMC: 5553721. DOI: 10.1002/ajh.24735. View

4.
Stieglitz E, Taylor-Weiner A, Chang T, Gelston L, Wang Y, Mazor T . The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015; 47(11):1326-1333. PMC: 4626387. DOI: 10.1038/ng.3400. View

5.
Helsmoortel H, Bresolin S, Lammens T, Cave H, Noellke P, Caye A . LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia. Blood. 2015; 127(9):1163-72. DOI: 10.1182/blood-2015-09-667808. View