» Articles » PMID: 32750228

The Bioenergetics of Neuronal Morphogenesis and Regeneration: Frontiers Beyond the Mitochondrion

Overview
Journal Dev Neurobiol
Specialties Biology
Neurology
Date 2020 Aug 5
PMID 32750228
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The formation of axons and dendrites during development, and their regeneration following injury, are energy intensive processes. The underlying assembly and dynamics of the cytoskeleton, axonal transport mechanisms, and extensive signaling networks all rely on ATP and GTP consumption. Cellular ATP is generated through oxidative phosphorylation (OxP) in mitochondria, glycolysis and "regenerative" kinase systems. Recent investigations have focused on the role of the mitochondrion in axonal development and regeneration emphasizing the importance of this organelle and OxP in axon development and regeneration. In contrast, the understanding of alternative sources of ATP in neuronal morphogenesis and regeneration remains largely unexplored. This review focuses on the current state of the field of neuronal bioenergetics underlying morphogenesis and regeneration and considers the literature on the bioenergetics of non-neuronal cell motility to emphasize the potential contributions of non-mitochondrial energy sources.

Citing Articles

Vimentin Intermediate Filaments Maintain Membrane Potential of Mitochondria in Growing Neurites.

Dayal A, Parfenteva O, Wang H, Gebreselase B, Gyoeva F, Alieva I Biology (Basel). 2025; 13(12.

PMID: 39765662 PMC: 11726714. DOI: 10.3390/biology13120995.


Neuronal glycolysis: focus on developmental morphogenesis and localized subcellular functions.

Gallo G Commun Integr Biol. 2024; 17(1):2343532.

PMID: 38655369 PMC: 11037282. DOI: 10.1080/19420889.2024.2343532.


Actin(g) toward a revised understanding of the role of cytoskeletal dynamics in neuronal bioenergetics.

Holland S, Gallo G Neural Regen Res. 2024; 19(10):2109-2110.

PMID: 38488542 PMC: 11034601. DOI: 10.4103/1673-5374.392863.


NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport.

Yang S, Niou Z, Enriquez A, LaMar J, Huang J, Ling K Mol Neurodegener. 2024; 19(1):13.

PMID: 38282024 PMC: 10823734. DOI: 10.1186/s13024-023-00690-9.


Actin cytoskeletal dynamics do not impose an energy drain on growth cone bioenergetics.

Holland S, Gallo G J Cell Sci. 2023; 136(16).

PMID: 37534394 PMC: 10445737. DOI: 10.1242/jcs.261356.


References
1.
Lin C, Forscher P . Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron. 1995; 14(4):763-71. DOI: 10.1016/0896-6273(95)90220-1. View

2.
Courchet J, Lewis Jr T, Lee S, Courchet V, Liou D, Aizawa S . Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell. 2013; 153(7):1510-25. PMC: 3729210. DOI: 10.1016/j.cell.2013.05.021. View

3.
Beckner M, Stracke M, Liotta L, Schiffmann E . Glycolysis as primary energy source in tumor cell chemotaxis. J Natl Cancer Inst. 1990; 82(23):1836-40. DOI: 10.1093/jnci/82.23.1836. View

4.
Kerstein P, Nichol IV R, Gomez T . Mechanochemical regulation of growth cone motility. Front Cell Neurosci. 2015; 9:244. PMC: 4493769. DOI: 10.3389/fncel.2015.00244. View

5.
Tarasov A, Rutter G . Use of genetically encoded sensors to monitor cytosolic ATP/ADP ratio in living cells. Methods Enzymol. 2014; 542:289-311. DOI: 10.1016/B978-0-12-416618-9.00015-7. View