» Articles » PMID: 32732942

Nested Whole-genome Duplications Coincide with Diversification and High Morphological Disparity in Brassicaceae

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Aug 1
PMID 32732942
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.

Citing Articles

Evolution of a SHOOTMERISTEMLESS transcription factor binding site promotes fruit shape determination.

Hu Z, Majda M, Sun H, Zhang Y, Ding Y, Yuan Q Nat Plants. 2024; 11(1):23-35.

PMID: 39668212 PMC: 11757149. DOI: 10.1038/s41477-024-01854-1.


Polyploids of Brassicaceae: Genomic Insights and Assembly Strategies.

Jeon D, Kim C Plants (Basel). 2024; 13(15).

PMID: 39124204 PMC: 11314605. DOI: 10.3390/plants13152087.


Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae.

Liu J, Zhou S, Liu Y, Zhao B, Yu D, Zhong M Plant Commun. 2024; 5(7):100878.

PMID: 38475995 PMC: 11287156. DOI: 10.1016/j.xplc.2024.100878.


The evolution of ephemeral flora in Xinjiang, China: insights from plastid phylogenomic analyses of Brassicaceae.

Xiao T, Song F, Vu D, Feng Y, Ge X BMC Plant Biol. 2024; 24(1):111.

PMID: 38360561 PMC: 10868009. DOI: 10.1186/s12870-024-04796-0.


Genome-wide identification, evolution, and expression analysis of the NAC gene family in chestnut ().

Cao F, Guo C, Wang X, Wang X, Yu L, Zhang H Front Genet. 2024; 15:1337578.

PMID: 38333622 PMC: 10850246. DOI: 10.3389/fgene.2024.1337578.


References
1.
. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019; 574(7780):679-685. PMC: 6872490. DOI: 10.1038/s41586-019-1693-2. View

2.
Nikolov L, Shushkov P, Nevado B, Gan X, Al-Shehbaz I, Filatov D . Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 2019; 222(3):1638-1651. DOI: 10.1111/nph.15732. View

3.
Katoh K, Standley D . MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772-80. PMC: 3603318. DOI: 10.1093/molbev/mst010. View

4.
Franzke A, Lysak M, Al-Shehbaz I, Koch M, Mummenhoff K . Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 2010; 16(2):108-16. DOI: 10.1016/j.tplants.2010.11.005. View

5.
Lohaus R, Van de Peer Y . Of dups and dinos: evolution at the K/Pg boundary. Curr Opin Plant Biol. 2016; 30:62-9. DOI: 10.1016/j.pbi.2016.01.006. View