» Articles » PMID: 32726631

A High-Resolution Method for Quantitative Molecular Analysis of Functionally Characterized Individual Synapses

Overview
Journal Cell Rep
Publisher Cell Press
Date 2020 Jul 30
PMID 32726631
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Elucidating the molecular mechanisms underlying the functional diversity of synapses requires a high-resolution, sensitive, diffusion-free, quantitative localization method that allows the determination of many proteins in functionally characterized individual synapses. Array tomography permits the quantitative analysis of single synapses but has limited sensitivity, and its application to functionally characterized synapses is challenging. Here, we aim to overcome these limitations by searching the parameter space of different fixation, resin, embedding, etching, retrieval, and elution conditions. Our optimizations reveal that etching epoxy-resin-embedded ultrathin sections with Na-ethanolate and treating them with SDS dramatically increase the labeling efficiency of synaptic proteins. We also demonstrate that this method is ideal for the molecular characterization of individual synapses following paired recordings, two-photon [Ca] or glutamate-sensor (iGluSnFR) imaging. This method fills a missing gap in the toolbox of molecular and cellular neuroscience, helping us to reveal how molecular heterogeneity leads to diversity in function.

Citing Articles

Microglia dysfunction, neurovascular inflammation and focal neuropathologies are linked to IL-1- and IL-6-related systemic inflammation in COVID-19.

Fekete R, Simats A, Biro E, Posfai B, Cserep C, Schwarcz A Nat Neurosci. 2025; 28(3):558-576.

PMID: 40050441 PMC: 11893456. DOI: 10.1038/s41593-025-01871-z.


Data-driven synapse classification reveals a logic of glutamate receptor diversity.

Micheva K, Simhal A, Schardt J, Smith S, Weinberg R, Owen S bioRxiv. 2024; .

PMID: 39713368 PMC: 11661198. DOI: 10.1101/2024.12.11.628056.


Understanding the molecular diversity of synapses.

van Oostrum M, Schuman E Nat Rev Neurosci. 2024; 26(2):65-81.

PMID: 39638892 DOI: 10.1038/s41583-024-00888-w.


Ultraplex microscopy: versatile highly-multiplexed molecular labeling and imaging across scale and resolution.

Perez-Garza J, Orea J, Deane Z, Raimondi G, Tripp R, Charles I bioRxiv. 2024; .

PMID: 39229092 PMC: 11370420. DOI: 10.1101/2024.08.17.605585.


Array tomography: trails to discovery.

Micheva K, Burden J, Schifferer M Methods Microsc. 2024; 1(1):9-17.

PMID: 39119254 PMC: 11308915. DOI: 10.1515/mim-2024-0001.


References
1.
Sylwestrak E, Ghosh A . Elfn1 regulates target-specific release probability at CA1-interneuron synapses. Science. 2012; 338(6106):536-40. PMC: 5297939. DOI: 10.1126/science.1222482. View

2.
Biro A, Holderith N, Nusser Z . Quantal size is independent of the release probability at hippocampal excitatory synapses. J Neurosci. 2005; 25(1):223-32. PMC: 6725207. DOI: 10.1523/JNEUROSCI.3688-04.2005. View

3.
Sudhof T . The presynaptic active zone. Neuron. 2012; 75(1):11-25. PMC: 3743085. DOI: 10.1016/j.neuron.2012.06.012. View

4.
Fritschy J, Weinmann O, Wenzel A, Benke D . Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol. 1998; 390(2):194-210. View

5.
Fuzik J, Zeisel A, Mate Z, Calvigioni D, Yanagawa Y, Szabo G . Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol. 2015; 34(2):175-183. PMC: 4745137. DOI: 10.1038/nbt.3443. View