» Articles » PMID: 32724849

Slow Proton Transfer in Nanoconfined Water

Overview
Journal ACS Cent Sci
Specialty Chemistry
Date 2020 Jul 30
PMID 32724849
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The transport of protons in nanoconfined environments, such as in nanochannels of biological or artificial proton conductive membranes, is essential to chemistry, biology, and nanotechnology. In water, proton diffusion occurs by hopping of protons between water molecules. This process involves the rearrangement of many hydrogen bonds and as such can be strongly affected by nanoconfinement. We study the vibrational and structural dynamics of hydrated protons in water nanodroplets stabilized by a cationic surfactant using polarization-resolved femtosecond infrared transient absorption spectroscopy. We determine the time scale of proton hopping in the center of the water nanodroplets from the dynamics of the anisotropy of the transient absorption signals. We find that in small nanodroplets with a diameter <4 nm, proton hopping is more than 10 times slower than in bulk water. Even in relatively large nanodroplets with a diameter of ∼7 nm, we find that the rate of proton hopping is slowed by ∼4 times compared with bulk water.

Citing Articles

Characterization of Water Structure and Phase Behavior within Metal-Organic Nanotubes.

Jahinge T, Payne M, Unruh D, Jayasinghe A, Yu P, Forbes T Langmuir. 2023; 39(51):18899-18908.

PMID: 38081592 PMC: 10753883. DOI: 10.1021/acs.langmuir.3c02786.


Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells.

Wang Y, Wang T, Bu S, Zhu J, Wang Y, Zhang R Nat Commun. 2023; 14(1):1828.

PMID: 37005392 PMC: 10067964. DOI: 10.1038/s41467-023-37524-7.


Fabrication and Optimization of Nafion as a Protective Membrane for TiN-Based pH Sensors.

Paul Shylendra S, Wajrak M, Alameh K Sensors (Basel). 2023; 23(4).

PMID: 36850929 PMC: 9965570. DOI: 10.3390/s23042331.


Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset.

Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W Chem Rev. 2023; 123(5):1925-2015.

PMID: 36724185 PMC: 9999435. DOI: 10.1021/acs.chemrev.2c00611.


Highly Altered State of Proton Transport in Acid Pools in Charged Reverse Micelles.

Hao H, Adams E, Funke S, Schwaab G, Havenith M, Head-Gordon T J Am Chem Soc. 2023; 145(3):1826-1834.

PMID: 36633459 PMC: 9881006. DOI: 10.1021/jacs.2c11331.


References
1.
Liu L, Hunger J, Bakker H . Energy relaxation dynamics of the hydration complex of hydroxide. J Phys Chem A. 2011; 115(51):14593-8. DOI: 10.1021/jp2070248. View

2.
Nguyen K, Nguyen A . Suppressing interfacial water signals to assist the peak assignment of the N⁺-H stretching mode in sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys. 2015; 17(43):28534-8. DOI: 10.1039/c5cp05374a. View

3.
Biswas R, Steve Tse Y, Tokmakoff A, Voth G . Role of Presolvation and Anharmonicity in Aqueous Phase Hydrated Proton Solvation and Transport. J Phys Chem B. 2015; 120(8):1793-804. DOI: 10.1021/acs.jpcb.5b09466. View

4.
Dokter A, Woutersen S, Bakker H . Inhomogeneous dynamics in confined water nanodroplets. Proc Natl Acad Sci U S A. 2006; 103(42):15355-8. PMC: 1592463. DOI: 10.1073/pnas.0603239103. View

5.
Klicova L, Sebej P, Stacko P, Filippov S, Bogomolova A, Padilla M . CTAB/water/chloroform reverse micelles: a closed or open association model?. Langmuir. 2012; 28(43):15185-92. DOI: 10.1021/la303245e. View