» Articles » PMID: 32724265

'KMC-TDGL'-a Coarse-grained Methodology for Simulating Interfacial Dynamics in Complex Fluids: Application to Protein-mediated Membrane Processes

Overview
Journal Mol Phys
Date 2020 Jul 30
PMID 32724265
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

In this article, we describe a new multiscale simulation algorithm (which we term the 'KMC-TDGL' method) applicable for the description of equilibrium and dynamic processes associated with a particular class of complex fluids with nanoscale inclusions, namely, biological membranes mediated by membrane-associating and membrane-bound proteins. We adopt a novel strategy of integrating two different phenomenological approaches, namely, a field theoretic (continuum) description for the membrane dynamics given by the time-dependent Ginzburg-Landau equation and a random walk on a discretized lattice description for protein diffusion dynamics. We illustrate that this integrated approach results in a unified description of protein-mediated membrane dynamics.

Citing Articles

Quantification of Curvature Sensing Behavior of Curvature-Inducing Proteins on Model Wavy Substrates.

Tourdot R, Ramakrishnan N, Parihar K, Radhakrishnan R J Membr Biol. 2022; 255(2-3):175-184.

PMID: 35333976 PMC: 10351602. DOI: 10.1007/s00232-022-00228-y.


Nonaxisymmetric Shapes of Biological Membranes from Locally Induced Curvature.

Omar Y, Sahu A, Sauer R, Mandadapu K Biophys J. 2020; 119(6):1065-1077.

PMID: 32860742 PMC: 7499066. DOI: 10.1016/j.bpj.2020.07.021.


Mesoscale simulations of curvature-inducing protein partitioning on lipid bilayer membranes in the presence of mean curvature fields.

Liu J, Tourdot R, Ramanan V, Agrawal N, Radhakrishanan R Mol Phys. 2015; 110(11-12):1127-1137.

PMID: 26500377 PMC: 4613783. DOI: 10.1080/00268976.2012.664661.


Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.

Ramakrishnan N, Kumar P, Radhakrishnan R Phys Rep. 2014; 543(1):1-60.

PMID: 25484487 PMC: 4251917. DOI: 10.1016/j.physrep.2014.05.001.


Multiscale computational models in physical systems biology of intracellular trafficking.

Tourdot R, Bradley R, Ramakrishnan N, Radhakrishnan R IET Syst Biol. 2014; 8(5):198-213.

PMID: 25257021 PMC: 4336166. DOI: 10.1049/iet-syb.2013.0057.


References
1.
Naumowicz M, Figaszewski Z . Impedance analysis of lipid domains in phosphatidylcholine bilayer membranes containing ergosterol. Biophys J. 2005; 89(5):3174-82. PMC: 1366813. DOI: 10.1529/biophysj.105.063446. View

2.
Radhakrishnan A, McConnell H . Condensed complexes in vesicles containing cholesterol and phospholipids. Proc Natl Acad Sci U S A. 2005; 102(36):12662-6. PMC: 1200296. DOI: 10.1073/pnas.0506043102. View

3.
Lee S, Hori Y, Groves J, Dustin M, Chakraborty A . Correlation of a dynamic model for immunological synapse formation with effector functions: two pathways to synapse formation. Trends Immunol. 2002; 23(10):492-9. DOI: 10.1016/s1471-4906(02)02285-8. View

4.
Weikl T, Netz R, Lipowsky R . Unbinding transitions and phase separation of multicomponent membranes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000; 62(1 Pt A):R45-8. DOI: 10.1103/physreve.62.r45. View

5.
Pandit S, Bostick D, Berkowitz M . Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: lipid complexation, ion binding, and electrostatics. Biophys J. 2003; 85(5):3120-31. PMC: 1303588. DOI: 10.1016/S0006-3495(03)74730-4. View